Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation

Bosonic ultra-light dark matter (ULDM) would form cored density distributions at the center of galaxies. These cores, seen in numerical simulations, admit analytic description as the lowest energy bound state solution ("soliton") of the Schroedinger-Poisson equations. Numerical simulations of ULDM galactic halos found empirical scaling relations between the mass of the large-scale host halo and the mass of the central soliton. We discuss how the simulation results of different groups can be understood in terms of the basic properties of the soliton. Importantly, simulations imply that the energy per unit mass in the soliton and in the virialised host halo should be approximately equal. This relation lends itself to observational tests, because it predicts that the peak circular velocity, measured for the host halo in the outskirts of the galaxy, should approximately repeat itself in the central region. Contrasting this prediction to the measured rotation curves of well-resolved near-by galaxies, we show that ULDM in the mass range $m\sim (10^{-22}\div 10^{-21})$ eV, which has been invoked as a possible solution to the small-scale puzzles of $\Lambda$CDM, is in tension with the data. We suggest that a dedicated analysis of the Milky Way inner gravitational potential could probe ULDM up to $m\lesssim 10^{-19}$ eV.

[1]  Jens C. Niemeyer,et al.  Formation and structure of ultralight bosonic dark matter halos , 2018, Physical Review D.

[2]  I. Tkachev,et al.  Gravitational Bose-Einstein Condensation in the Kinetic Regime. , 2018, Physical review letters.

[3]  M. Hertzberg,et al.  Can light dark matter solve the core-cusp problem? , 2018, Physical Review D.

[4]  I. Tkachev,et al.  Gravitational Bose-Einstein Condensation in the Kinetic Regime. , 2018, Physical review letters.

[5]  J. Miralda-Escud'e,et al.  Bosonic dark matter halos: excited states and relaxation in the potential of the ground state , 2018, 1802.10513.

[6]  Hsi-Yu Schive,et al.  How do stars affect ψDM haloes , 2017, 1712.01947.

[7]  V. Desjacques,et al.  Impact of ultralight axion self-interactions on the large scale structure of the Universe , 2017, 1709.07946.

[8]  Y. S. Tsai,et al.  The Importance of Quantum Pressure of Fuzzy Dark Matter on Lyα Forest , 2017, The Astrophysical Journal.

[9]  J. Eby Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles , 2017 .

[10]  T. Matos,et al.  Comparison between two scalar field models using rotation curves of spiral galaxies , 2017, 1708.06681.

[11]  Y. S. Tsai,et al.  Is Fuzzy Dark Matter in tension with Lyman-alpha forest? , 2017 .

[12]  Matteo Viel,et al.  Lyman-alpha Constraints on Ultralight Scalar Dark Matter: Implications for the Early and Late Universe , 2017, 1708.00015.

[13]  O. Gerhard,et al.  The Initial Mass Function of the Inner Galaxy Measured from OGLE-III Microlensing Timescales , 2017, 1706.04193.

[14]  L. Hernquist,et al.  Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes. , 2017, Monthly notices of the Royal Astronomical Society.

[15]  O. Sarbach,et al.  Self-gravitating black hole scalar wigs , 2017, 1704.03450.

[16]  Eric Armengaud,et al.  Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest , 2017, 1703.09126.

[17]  Matteo Viel,et al.  First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.

[18]  A. Popolo,et al.  Evidence against cuspy dark matter haloes in large galaxies , 2017, 1701.02698.

[19]  Lizbeth M. Fern'andez-Hern'andez,et al.  Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter , 2017, 1701.00912.

[20]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[21]  J. Peñarrubia,et al.  Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies , 2016, 1609.05856.

[22]  M. F. Astronomie,et al.  Dynamical modelling of the galactic bulge and bar: the Milky Way's pattern speed, stellar and dark matter mass distribution , 2016, 1608.07954.

[23]  N. Neumayer,et al.  Triaxial orbit-based modelling of the Milky Way nuclear star cluster , 2016, 1701.01583.

[24]  Jens C. Niemeyer,et al.  Cosmological particle-in-cell simulations with ultralight axion dark matter , 2016, 1608.00802.

[25]  J. Schombert,et al.  SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES , 2016, 1606.09251.

[26]  Tzihong Chiueh,et al.  Jeans Analysis for Dwarf Spheroidal Galaxies in Wave Dark Matter , 2016, 1606.09030.

[27]  A. Popolo,et al.  Small scale problems of the $\Lambda$CDM model: a short review , 2016, 1606.07790.

[28]  J. Niemeyer,et al.  Simulations of solitonic core mergers in ultralight axion dark matter cosmologies , 2016, 1606.05151.

[29]  D. Spergel,et al.  Ultra-light dark matter in ultra-faint dwarf galaxies , 2016, 1603.07321.

[30]  Hyeong-Chan Kim,et al.  The M-sigma relation of supermassive black holes from the scalar field dark matter , 2015, 1512.02351.

[31]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[32]  S. Sale,et al.  KINEMATIC DETECTION OF THE GALACTIC NUCLEAR DISK , 2015, 1507.02695.

[33]  Y. Sofue Dark halos of M 31 and the Milky Way , 2015, 1504.05368.

[34]  C. Soubiran,et al.  The incorrect rotation curve of the Milky Way , 2015, 1504.01507.

[35]  D. Marsh,et al.  Axion dark matter, solitons and the cusp–core problem , 2015, 1502.03456.

[36]  J. Silk,et al.  Galaxy UV-luminosity function and reionization constraints on axion dark matter , 2014, 1409.3544.

[37]  Berkeley,et al.  The old Nuclear Star Cluster in the Milky Way , 2014, 1403.5266.

[38]  Tzihong Chiueh,et al.  Understanding the core-halo relation of quantum wave dark matter from 3D simulations. , 2014, Physical review letters.

[39]  T. Broadhurst,et al.  Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.

[40]  T. Zwitter,et al.  Constraining the Galaxy's dark halo with RAVE stars , 2014, 1406.4130.

[41]  N. Neumayer,et al.  Surface brightness profile of the Milky Way’s nuclear star cluster , 2014, 1403.6657.

[42]  P. Shapiro,et al.  Finding New Signature Effects on Galactic Dynamics to Constrain Bose–Einstein-Condensed Cold Dark Matter , 2012, 1209.1835.

[43]  R. Genzel,et al.  THE NUCLEAR CLUSTER OF THE MILKY WAY: TOTAL MASS AND LUMINOSITY , 2013, Proceedings of the International Astronomical Union.

[44]  Y. Sofue Rotation Curve and Mass Distribution in the Galactic Center - From Black Hole to Entire Galaxy , 2013, 1307.8241.

[45]  M. Alcubierre,et al.  Schwarzschild black holes can wear scalar wigs. , 2012, Physical review letters.

[46]  T. Matos,et al.  Flat central density profile and constant dark matter surface density in galaxies from scalar field dark matter , 2012, 1201.3032.

[47]  Y. Sofue Grand Rotation Curve and Dark-Matter Halo in the Milky Way Galaxy , 2011, 1110.4431.

[48]  M. Alcubierre,et al.  Are black holes a serious threat to scalar field dark matter models , 2011, 1108.0931.

[49]  P. Chavanis Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results , 2011, 1103.2050.

[50]  S. White,et al.  There's no place like home? Statistics of Milky Way-mass dark matter haloes , 2009, 0911.4484.

[51]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[52]  M. Honma,et al.  Unified Rotation Curve of the Galaxy — Decomposition into de Vaucouleurs Bulge, Disk, Dark Halo, and the 9-kpc Rotation Dip — , 2008, 0811.0859.

[53]  France,et al.  Kinematics of the old stellar population at the galactic centre , 2008, 0810.1040.

[54]  T. Chiueh,et al.  HIGH-RESOLUTION SIMULATION ON STRUCTURE FORMATION WITH EXTREMELY LIGHT BOSONIC DARK MATTER , 2008, 0806.0232.

[55]  Seungkyung Oh,et al.  Mass Distribution in the Central Few Parsecs of Our Galaxy , 2006 .

[56]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[57]  D. Turaev,et al.  Effect of angular momentum distribution on gravitational loss-cone instability in stellar clusters around a massive black hole , 2007, 0710.1193.

[58]  A Winnberg,et al.  Circumstellar CO in OH/IR stars close to the Galactic Centre , 2006 .

[59]  T. Lauer,et al.  HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole , 2005, astro-ph/0509839.

[60]  E. Massó Axion Dark Matter , 2004 .

[61]  A. Miyazaki,et al.  SiO Maser Survey of the Large-Amplitude Variables in the Galactic Center , 2004, astro-ph/0403113.

[62]  A. M. Ghez,et al.  Full Three Dimensional Orbits for Multiple Stars on Close Approaches to the Central Supermassive Black Hole , 2003, astro-ph/0303151.

[63]  J. Lesgourgues,et al.  A light scalar field at the origin of galaxy rotation curves , 2002 .

[64]  R. Launhardt,et al.  The Nuclear Bulge of the Galaxy. III. Large-Scale Physical Characteristics of Stars and Interstellar Matter , 2002, astro-ph/0201294.

[65]  V. Rubin,et al.  High-resolution rotation curves of low surface brightness galaxies , 2002, astro-ph/0201276.

[66]  J. Lesgourgues,et al.  Quintessential halos around galaxies , 2001, astro-ph/0105564.

[67]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[68]  R. Barkana,et al.  Cold and Fuzzy Dark Matter , 2000, astro-ph/0003365.

[69]  P. Salucci,et al.  The Universal Rotation Curve of Spiral Galaxies: I. the Dark Matter Connection , 1995, astro-ph/9506004.

[70]  P. Salucci,et al.  The Universal Rotation Curve of Spiral Galaxies: I. the Dark Matter Connection , 1995, astro-ph/9506004.

[71]  A. Winnberg,et al.  OH/IR stars close to the Galactic Centre. II - Their spatial and kinematic properties and the mass distribution within 5-100 PC from the galactic centre , 1992 .

[72]  K. Sellgren,et al.  Stellar kinematics in the galactic centre , 1989 .

[73]  W. Unruh Absorption Cross-Section of Small Black Holes , 1976 .

[74]  S. Bonazzola,et al.  Systems of self-gravitating particles in general relativity , 1969 .