Optical constants of In0.53Ga0.47As/InP: Experiment and modeling

The optical constants e(E)=e1(E)+ie2(E) of unintentionally doped In0.53Ga0.47As lattice matched to InP have been measured at 300 K using spectral ellipsometry in the range of 0.4 to 5.1 eV. The e(E) spectra displayed distinct structures associated with critical points at E0 (direct gap), spin-orbit split E0+Δ0 component, spin-orbit split E1, E1+Δ1, E0′ feature, as well as E2. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden model dielectric function [Holden et al., Phys. Rev. B 56, 4037 (1997)], plus a Kramers–Kronig consistent correction, described in this work, that improves the fitting at low energies. This extended model is based on the electronic energy-band structure near these critical points plus excitonic and band-to-band Coulomb-enhancement effects at E0, E0+Δ0, and the E1, E1+Δ1, doublet. In addition to evaluating the energies of these various band-to-band critical points, information about the binding energy (R1) of the two-dimen...

[1]  Aleksandra B. Djurišić,et al.  Modeling the optical constants of hexagonal GaN, InN, and AlN , 1999 .

[3]  M. Ohkubo,et al.  InGaAs/InP double-heterojunction bipolar transistors with step graded InGaAsP between InGaAs base and InP collector grown by metalorganic chemical vapor deposition , 1991 .

[4]  H. Wehmann,et al.  Optical Absorption and Refractive Index near the Bandgap for InGaAsP , 1983 .

[5]  Akio Sasaki,et al.  Electron mobility and energy gap of In0.53Ga0.47As on InP substrate , 1976 .

[6]  Kim,et al.  Optical properties of ZnSe and its modeling. , 1996, Physical review. B, Condensed matter.

[7]  D. Aspnes,et al.  Optical properties of In 1-x Ga x As y P 1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry , 1982 .

[8]  Fred H. Pollak,et al.  Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices , 1993 .

[9]  Jasprit Singh,et al.  Semiconductor Devices: An Introduction. , 1994 .

[10]  Sadao Adachi,et al.  Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design , 1982 .

[11]  A. Djurišić,et al.  Dielectric function models for describing the optical properties of hexagonal GaN , 2001 .

[12]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[13]  John A. Woollam,et al.  Isotropic dielectric functions of highly disordered AlxGa1−xInP (0⩽x⩽1) lattice matched to GaAs , 1999 .

[14]  A. Djurišić,et al.  Modelling the optical constants of GaAs: excitonic effects at E1, E1 + Δ1 critical points , 1999 .

[15]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[16]  D. Shvydka,et al.  Optical properties of CdTe1−xSx (0⩽x⩽1): Experiment and modeling , 1999 .

[17]  Adachi Excitonic effects in the optical spectrum of GaAs. , 1990, Physical review. B, Condensed matter.

[18]  Shen,et al.  Photoreflectance study of narrow-well strained-layer InxGa1-xAs/GaAs coupled multiple-quantum-well structures. , 1988, Physical review. B, Condensed matter.

[19]  F. Pollak,et al.  Comment on `Modelling the optical constants of GaAs: excitonic effects at E1,E1 + Δ1 critical points' , 2001 .

[20]  H. Temkin,et al.  Compact metalorganic molecular‐beam epitaxy growth system , 1994 .

[21]  Taguchi,et al.  Optical properties of ZnSe. , 1991, Physical review. B, Condensed matter.

[22]  Fred H. Pollak,et al.  Optical constants of Ga1−xInxAsySb1−y lattice matched to GaSb (001): Experiment and modeling , 2000 .

[23]  Fred H. Pollak,et al.  SPECTRAL ELLIPSOMETRY INVESTIGATION OF ZN0.53CD0.47SE LATTICE MATCHED TO INP , 1997 .

[24]  Adachi Optical properties of In1-xGaxAsyP1-y alloys. , 1989, Physical review. B, Condensed matter.

[25]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[26]  E. Kuphal,et al.  Optical properties of In1−xGaxP1−yAsy, InP, GaAs, and GaP determined by ellipsometry , 1982 .

[27]  H. Burkhard,et al.  Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry , 1992 .

[28]  M. Balkanski,et al.  Coulomb Effects at Saddle-Type Critical Points in CdTe, ZnTe, ZnSe, and HgTe , 1971 .

[29]  John M. Zavada,et al.  Ordinary optical dielectric functions of anisotropic hexagonal GaN film determined by variable angle spectroscopic ellipsometry , 2000 .

[30]  R. Dupuis,et al.  Quarter‐wave Bragg reflector stack of InP‐In0.53Ga0.47As for 1.65 μm wavelength , 1990 .

[31]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .

[32]  S. Luryi,et al.  Collector‐up light‐emitting charge injection transistors in n‐InGaAs/InAlAs/p‐InGaAs and n‐InGaAs/InP/p‐InGaAs heterostructures , 1993 .

[33]  V. Asnin,et al.  Modeling the Optical Constants of Diamond- and Zincblende-Type Semiconductors: Discrete and Continuum Exciton Effects at E0 and E1 , 1999 .

[34]  Joseph L. Birman,et al.  Electronic States and Optical Transitions in Solids , 1976 .

[35]  J. Chelikowsky,et al.  Electronic Structure and Optical Properties of Semiconductors , 1989 .

[36]  F. Pollak Response to “Comment on ‘Optical properties of CdTe1−xSx (0⩽x⩽1): Experiment and modeling’ ” [J. Appl. Phys. 88, 2172 (2000)] , 2000 .

[37]  E. Kane,et al.  Coulomb Effects at Saddle-Type Critical Points , 1969 .

[38]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[39]  S. Adachi,et al.  Optical constants of CdxZn1−xSe ternary alloys , 1998 .