Modeling Bolted Connections in Wood: A Three-Dimensional Finite-Element Approach

A three-dimensional (3-D) finite-element model was developed and verified which is capable of predicting the failure mode and load-deformation (P - Δ) behavior of a single bolted connection in wood. The 3-D geometry of the model is complemented by a trilinear orthotropic constitutive model for wood and an elastic-perfectly plastic constitutive characterization of the pin (bolt). The model accounted for the nonlinear behavior found in bolted wood connections associated with wood crushing and geometric nonlinearities at the wood/metal interface. A special contact element was used at the wood/pin interface to enforce a criterion of no pin penetration (i.e., strain compatibility) through the wood member. Experimentally obtained P-Δ curves were compared against those obtained numerically. For all geometries studied, the model proved to capture the characteristics of the experimental analyses.