Solving quantum statistical mechanics with variational autoregressive networks and quantum circuits

We extend the ability of an unitary quantum circuit by interfacing it with a classical autoregressive neural network. The combined model parametrizes a variational density matrix as a classical mixture of quantum pure states, where the autoregressive network generates bitstring samples as input states to the quantum circuit. We devise an efficient variational algorithm to jointly optimize the classical neural network and the quantum circuit to solve quantum statistical mechanics problems. One can obtain thermal observables such as the variational free energy, entropy, and specific heat. As a byproduct, the algorithm also gives access to low energy excitation states. We demonstrate applications of the approach to thermal properties and excitation spectra of the quantum Ising model with resources that are feasible on near-term quantum computers.

[1]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[2]  C. Fiolhais,et al.  Variational principles in quantum statistical mechanics , 1987 .

[3]  Amnon Shashua,et al.  Deep autoregressive models for the efficient variational simulation of many-body quantum systems , 2019, Physical review letters.

[4]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[5]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[6]  Stefan Wessel,et al.  Thermal Ising transitions in the vicinity of two-dimensional quantum critical points , 2016, 1602.02096.

[7]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[8]  Jin-Guo Liu,et al.  Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design , 2019, Quantum.

[9]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[10]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[11]  Yuya O. Nakagawa,et al.  Variational quantum algorithm for nonequilibrium steady states , 2019, 1908.09836.

[12]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[13]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[14]  Karol Gregor,et al.  Neural Variational Inference and Learning in Belief Networks , 2014, ICML.

[15]  Lei Wang,et al.  Solving Statistical Mechanics using Variational Autoregressive Networks , 2018, Physical review letters.

[16]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[17]  Frank Verstraete,et al.  Quantum circuits for strongly correlated quantum systems , 2008, ArXiv.

[18]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[19]  D. DiVincenzo,et al.  Problem of equilibration and the computation of correlation functions on a quantum computer , 1998, quant-ph/9810063.

[20]  K. Cranmer,et al.  Inferring the quantum density matrix with machine learning , 2019, 1904.05903.

[21]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[22]  Pan Zhang,et al.  Neural-network based general method for statistical mechanics on sparse systems , 2019, ArXiv.

[23]  David Duvenaud,et al.  Backpropagation through the Void: Optimizing control variates for black-box gradient estimation , 2017, ICLR.

[24]  Patrick J. Coles,et al.  Variational fast forwarding for quantum simulation beyond the coherence time , 2019, npj Quantum Information.

[25]  Jun Wang,et al.  Unsupervised Generative Modeling Using Matrix Product States , 2017, Physical Review X.

[26]  A. Schirotzek,et al.  Feynman diagrams versus Fermi-gas Feynman emulator , 2011, Nature Physics.

[27]  S. Lawrence,et al.  Simulation of Nonequilibrium Dynamics on a Quantum Computer. , 2018, Physical review letters.

[28]  C. Monroe,et al.  Generation of thermofield double states and critical ground states with a quantum computer , 2019, Proceedings of the National Academy of Sciences.

[29]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[30]  Kumar Krishna Agrawal,et al.  Discrete Flows: Invertible Generative Models of Discrete Data , 2019, DGS@ICLR.

[31]  Jun Li,et al.  Hybrid Quantum-Classical Approach to Quantum Optimal Control. , 2016, Physical review letters.

[32]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[33]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[34]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[35]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[36]  Lei Wang,et al.  Variational quantum eigensolver with fewer qubits , 2019, Physical Review Research.

[37]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[38]  J. Eisert,et al.  Thermalization in nature and on a quantum computer. , 2011, Physical review letters.

[39]  Ken M. Nakanishi,et al.  Subspace-search variational quantum eigensolver for excited states , 2018, Physical Review Research.

[40]  Igor L. Markov,et al.  Minimal Universal Two-qubit Quantum Circuits , 2003, quant-ph/0308033.

[41]  Jascha Sohl-Dickstein,et al.  REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models , 2017, NIPS.

[42]  Marcus A. Brubaker,et al.  Normalizing Flows: Introduction and Ideas , 2019, ArXiv.

[43]  Fernando G. S. L. Brandão,et al.  Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States , 2016, 1609.07877.

[44]  Ivano Tavernelli,et al.  Nonunitary Operations for Ground-State Calculations in Near-Term Quantum Computers. , 2019, Physical review letters.

[45]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[46]  Jingxiang Wu,et al.  Variational Thermal Quantum Simulation via Thermofield Double States. , 2018, Physical review letters.

[47]  Jack Hidary,et al.  Quantum Hamiltonian-Based Models and the Variational Quantum Thermalizer Algorithm , 2019, ArXiv.

[48]  Lei Wang,et al.  Tree Tensor Networks for Generative Modeling , 2019, Physical Review B.

[49]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[50]  Lei Wang Generative Models for Physicists , 2018 .

[51]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[52]  Emiel Hoogeboom,et al.  Integer Discrete Flows and Lossless Compression , 2019, NeurIPS.

[53]  D. Poulin,et al.  Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. , 2009, Physical review letters.

[54]  Lei Wang,et al.  Neural Canonical Transformation with Symplectic Flows , 2019, ArXiv.

[55]  Brian Swingle,et al.  Product spectrum ansatz and the simplicity of thermal states , 2018, Physical Review A.

[56]  A. Huber Variational Principles in Quantum Statistical Mechanics , 1968 .

[57]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[58]  Michael Figurnov,et al.  Monte Carlo Gradient Estimation in Machine Learning , 2019, J. Mach. Learn. Res..

[59]  Igor L. Markov,et al.  Minimal universal two-qubit controlled-NOT-based circuits (8 pages) , 2004 .

[60]  Keisuke Fujii,et al.  Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.

[61]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[62]  Ivan Kobyzev,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.