Parameterized and Approximation Algorithms for Boxicity

Boxicity of a graph $G(V,$ $E)$, denoted by $box(G)$, is the minimum integer $k$ such that $G$ can be represented as the intersection graph of axis parallel boxes in $\mathbb{R}^k$. The problem of computing boxicity is inapproximable even for graph classes like bipartite, co-bipartite and split graphs within $O(n^{1 - \epsilon})$-factor, for any $\epsilon >0$ in polynomial time unless $NP=ZPP$. We give FPT approximation algorithms for computing the boxicity of graphs, where the parameter used is the vertex or edge edit distance of the given graph from families of graphs of bounded boxicity. This can be seen as a generalization of the parameterizations discussed in \cite{Adiga2}. Extending the same idea in one of our algorithms, we also get an $O\left(\frac{n\sqrt{\log \log n}}{\sqrt{\log n}}\right)$ factor approximation algorithm for computing boxicity and an $O\left(\frac{n {(\log \log n)}^{\frac{3}{2}}}{\sqrt{\log n}}\right)$ factor approximation algorithm for computing the cubicity. These seem to be the first $o(n)$ factor approximation algorithms known for both boxicity and cubicity. As a consequence of this result, a $o(n)$ factor approximation algorithm for computing the partial order dimension of finite posets and a $o(n)$ factor approximation algorithm for computing the threshold dimension of split graphs would follow.

[1]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[2]  Naveen Sivadasan,et al.  Boxicity and treewidth , 2007, J. Comb. Theory, Ser. B.

[3]  Danupon Nanongkai,et al.  Graph Products Revisited: Tight Approximation Hardness of Induced Matching, Poset Dimension and More , 2013, SODA.

[4]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .

[5]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[6]  Pim van 't Hof,et al.  Proper Interval Vertex Deletion , 2010, Algorithmica.

[7]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[8]  L. Sunil Chandran,et al.  Cubicity, boxicity, and vertex cover , 2007, Discret. Math..

[9]  Louis Esperet Boxicity of graphs with bounded degree , 2009, Eur. J. Comb..

[10]  Martin Grohe Computing crossing numbers in quadratic time , 2004, J. Comput. Syst. Sci..

[11]  Ben Dushnik,et al.  Partially Ordered Sets , 1941 .

[12]  Leizhen Cai,et al.  Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..

[13]  Saket Saurabh,et al.  Parameterized Algorithms for Boxicity , 2010, ISAAC.

[14]  Abhijin Adiga,et al.  The hardness of approximating the boxicity, cubicity and threshold dimension of a graph , 2010, Discret. Appl. Math..

[15]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[16]  Lorna Stewart,et al.  Complexity Results on Graphs with Few Cliques , 2007, Discret. Math. Theor. Comput. Sci..

[17]  Abhijin Adiga,et al.  Boxicity and Poset Dimension , 2010, SIAM J. Discret. Math..

[18]  Dániel Marx,et al.  Parameterized coloring problems on chordal graphs , 2004, Theor. Comput. Sci..

[19]  Abhijin Adiga,et al.  Cubicity of Interval Graphs and the Claw Number , 2009, Electron. Notes Discret. Math..

[20]  Carsten Thomassen,et al.  Interval representations of planar graphs , 1986, J. Comb. Theory, Ser. B.

[21]  Margaret B. Cozzens,et al.  Higher and multi-dimensional analogues of interval graphs , 1981 .

[22]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[23]  Dániel Marx,et al.  Obtaining a Planar Graph by Vertex Deletion , 2007, WG.

[24]  Jan Kratochvíl A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness , 1994, Discret. Appl. Math..

[25]  Pinar Heggernes,et al.  Interval Completion Is Fixed Parameter Tractable , 2008, SIAM J. Comput..