Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations
暂无分享,去创建一个
[1] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[2] J. Barlow,et al. Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .
[3] A. Ostrowski. A QUANTITATIVE FORMULATION OF SYLVESTER'S LAW OF INERTIA. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[4] Ren-Cang Li. Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations , 1998, SIAM J. Matrix Anal. Appl..
[5] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[6] W. Kahan. Accurate eigenvalues of a symmetric tri-diagonal matrix , 1966 .
[7] R. Mathias. Spectral Perturbation Bounds for Positive Definite Matrices , 1997 .
[8] Ilse C. F. Ipsen,et al. Relative perturbation techniques for singular value problems , 1995 .
[9] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[10] Ren-Cang Li. On perturbations of matrix pencils with real spectra , 1994 .
[11] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[12] Chandler Davis,et al. Perturbation of spectral subspaces and solution of linear operator equations , 1983 .
[13] W. Gragg,et al. On computing accurate singular values and eigenvalues of matrices with acyclic graphs , 1992 .
[14] P. Wedin. Perturbation bounds in connection with singular value decomposition , 1972 .
[15] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[16] Ren Li. Relative perturbation theory: (I) eigenvalue variations , 1994 .