Discriminants, Symmetrized Graph Monomials, and Sums Of Squares

In 1878, motivated by the requirements of the invariant theory of binary forms, J. J. Sylvester constructed, for every graph with possible multiple edges but without loops, its symmetrized graph monomial, which is a polynomial in the vertex labels of the original graph. We pose the question for which graphs this polynomial is nonnegative or a sum of squares. This problem is motivated by a recent conjecture of F. Sottile and E. Mukhin on the discriminant of the derivative of a univariate polynomial and by an interesting example of P. and A. Lax of a graph with four edges whose symmetrized graph monomial is nonnegative but not a sum of squares. We present detailed information about symmetrized graph monomials for graphs with four and six edges, obtained by computer calculations.