Consensual and Hierarchical Classification of Remotely Sensed Multispectral Images

Consensual and hierarchical approaches are developed for the classification of remotely sensed multispectral images. The proposed method consists of preprocessing of input patterns, generating multiple classification results by hierarchical neural networks, and a combining scheme to generate a consensus of multiple classification results. Transformations of input patterns by random matrices and nonlinear filtering are used for preprocessing. By varying the input patterns, the multiple classification results are generated with sufficiently independent errors by using a single type of classifier. This helps to improve classification performance when the multiple classification results are combined. Hierarchical neural networks involve the use of successive classifiers which are tuned to reduce the remaining errors to increase the classification performance. This structure includes detection schemes to decide whether successive classifiers are utilized for each input. Consensual and hierarchical approaches generate more reliable and accurate results based on group decision.

[1]  Sebastiano B. Serpico,et al.  Classification of multisensor remote-sensing images by structured neural networks , 1995, IEEE Trans. Geosci. Remote. Sens..

[2]  Esa Alhoniemi,et al.  Clustering of the self-organizing map , 2000, IEEE Trans. Neural Networks Learn. Syst..

[3]  S. M. Jong,et al.  An integrated spatial and spectral approach to the classification of Mediterranean land cover types: the SSC method , 2001 .

[4]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[5]  UedaNaonori Optimal Linear Combination of Neural Networks for Improving Classification Performance , 2000 .

[6]  P. H. Swain,et al.  Two effective feature selection criteria for multispectral remote sensing , 1973 .

[7]  Christophe Collet,et al.  Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery , 2000, Pattern Recognit..

[8]  J. Serra,et al.  An overview of morphological filtering , 1992 .

[9]  Sim Heng Ong,et al.  Segmentation of color images using a two-stage self-organizing network , 2002, Image Vis. Comput..

[10]  Okan K. Ersoy,et al.  A Spectral-Spatial Classification Algorithm for Multispectral Remote Sensing Data , 2003, ICANN.

[11]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[12]  William B. Yates,et al.  Engineering Multiversion Neural-Net Systems , 1996, Neural Computation.

[13]  Josef Kittler,et al.  Sum Versus Vote Fusion in Multiple Classifier Systems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  David A. Landgrebe,et al.  The development of a spectral-spatial classifier for earth observational data , 1980, Pattern Recognit..

[15]  David G. Stork,et al.  Pattern Classification , 1973 .

[16]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[18]  Shaun Quegan,et al.  Land cover classification using SAR: a comparison of the segmentation and filtering approaches , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[19]  Johannes R. Sveinsson,et al.  Parallel consensual neural networks , 1997, IEEE Trans. Neural Networks.

[20]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[21]  Teuvo Kohonen,et al.  Self-Organizing Maps, Second Edition , 1997, Springer Series in Information Sciences.

[22]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[23]  Fabio Roli,et al.  A theoretical and experimental analysis of linear combiners for multiple classifier systems , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Edward J. Delp,et al.  A study of the generalized morphological filter , 1992 .

[25]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[26]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[27]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[28]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[29]  Sankar K. Pal,et al.  Multispectral image segmentation using the rough-set-initialized EM algorithm , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  Roberto Battiti,et al.  Democracy in neural nets: Voting schemes for classification , 1994, Neural Networks.

[31]  Linda G. Shapiro,et al.  Image Segmentation Techniques , 1984, Other Conferences.

[32]  Y. V. Venkatesh,et al.  On the classification of multispectral satellite images using the multilayer perceptron , 2003, Pattern Recognit..

[33]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[34]  Ludmila I. Kuncheva,et al.  A Theoretical Study on Six Classifier Fusion Strategies , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Lorenzo Bruzzone,et al.  Combination of neural and statistical algorithms for supervised classification of remote-sensing image , 2000, Pattern Recognit. Lett..

[36]  Chih-Cheng Hung,et al.  A spatial classification algorithm using peer group pixels , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[37]  G. Mercier,et al.  Hyperspectral image segmentation with Markov chain model , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[38]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[39]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[40]  Naonori Ueda,et al.  Optimal Linear Combination of Neural Networks for Improving Classification Performance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[42]  Seongwon Cho,et al.  Parallel, self-organizing, hierarchical neural networks with competitive learning and safe rejection schemes , 1993 .

[43]  L. Buydens,et al.  SpaRef: a clustering algorithm for multispectral images , 2003 .

[44]  Zhi-Hua Zhou,et al.  SOM Based Image Segmentation , 2003, RSFDGrC.

[45]  Mohamed A. Deriche,et al.  A New Technique for Combining Multiple Classifiers using The Dempster-Shafer Theory of Evidence , 2002, J. Artif. Intell. Res..

[46]  R. Kettig,et al.  Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects , 1976, IEEE Transactions on Geoscience Electronics.

[47]  Grégoire Mercier,et al.  Classification of hyperspectral images with nonlinear filtering and support vector machines , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[48]  P. D. Heermann,et al.  Classification of multispectral remote sensing data using a back-propagation neural network , 1992, IEEE Trans. Geosci. Remote. Sens..

[49]  Fabio Roli,et al.  Design of effective neural network ensembles for image classification purposes , 2001, Image Vis. Comput..

[50]  Richard Alan Peters,et al.  A new algorithm for image noise reduction using mathematical morphology , 1995, IEEE Trans. Image Process..

[51]  Pierre Soille,et al.  Advances in mathematical morphology applied to geoscience and remote sensing , 2002, IEEE Trans. Geosci. Remote. Sens..

[52]  Derek Partridge Network generalization differences quantified , 1996, Neural Networks.

[53]  Vikash Kumar,et al.  A MRF model-based segmentation approach to classification for multispectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[54]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[55]  R. Kettig Computer classification of remotely sensed multispectral image data by extraction and classification of homogeneous objects. , 1975 .

[56]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[57]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[58]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[59]  David A. Landgrebe,et al.  Lowpass filter for increasing class separability , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[60]  Henk J. A. M. Heijmans Composing morphological filters , 1997, IEEE Trans. Image Process..

[61]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[62]  Marvin E. Bauer,et al.  Integrating Contextual Information with per-Pixel Classification for Improved Land Cover Classification , 2000 .

[63]  Bert Guindon,et al.  Landsat urban mapping based on a combined spectral–spatial methodology , 2004 .

[64]  Daesik Hong,et al.  Parallel, self-organizing, hierarchical neural networks , 1990, IEEE Trans. Neural Networks.

[65]  Kanti V. Mardia,et al.  A Spatial Thresholding Method for Image Segmentation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[66]  Mario Vento,et al.  To reject or not to reject: that is the question-an answer in case of neural classifiers , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[67]  Johannes R. Sveinsson,et al.  Consensus Based Classification of Multisource Remote Sensing Data , 2000, Multiple Classifier Systems.

[68]  Hugues Talbot,et al.  Directional Morphological Filtering , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[70]  Xavier Otazu,et al.  Multiresolution-based image fusion with additive wavelet decomposition , 1999, IEEE Trans. Geosci. Remote. Sens..

[71]  Paul M. Mather,et al.  Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields , 1999, IEEE Trans. Geosci. Remote. Sens..

[72]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[73]  Josef Kittler,et al.  Combining multiple classifiers by averaging or by multiplying? , 2000, Pattern Recognit..

[74]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[76]  Mark Berman,et al.  Segmenting multispectral Landsat TM images into field units , 2002, IEEE Trans. Geosci. Remote. Sens..

[77]  Simon Yueh,et al.  Application of neural networks to radar image classification , 1994, IEEE Trans. Geosci. Remote. Sens..

[78]  Tao Wang,et al.  Study on image-segmented classification , 2001, 2001 International Conferences on Info-Tech and Info-Net. Proceedings (Cat. No.01EX479).

[79]  Jon Sticklen,et al.  Knowledge-based segmentation of Landsat images , 1991, IEEE Trans. Geosci. Remote. Sens..

[80]  Bruce W. Schmeiser,et al.  Improving model accuracy using optimal linear combinations of trained neural networks , 1995, IEEE Trans. Neural Networks.

[81]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  David W. Opitz,et al.  Actively Searching for an E(cid:11)ective Neural-Network Ensemble , 1996 .

[83]  Fabio Roli,et al.  Design of effective multiple classifier systems by clustering of classifiers , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[84]  O. Ersoy,et al.  Consensual and Hierarchical Classification of Remotely Sensed Multispectral Images , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[85]  Mario Vento,et al.  A method for improving classification reliability of multilayer perceptrons , 1995, IEEE Trans. Neural Networks.

[86]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[87]  Germano C. Vasconcelos,et al.  Investigating feedforward neural networks with respect to the rejection of spurious patterns , 1995, Pattern Recognit. Lett..

[88]  C. Webber,et al.  Competitive learning, natural images and cortical cells , 1991 .

[89]  G.B. Coleman,et al.  Image segmentation by clustering , 1979, Proceedings of the IEEE.

[90]  Andrew Mehnert,et al.  An improved seeded region growing algorithm , 1997, Pattern Recognit. Lett..

[91]  Kagan Tumer,et al.  Analysis of decision boundaries in linearly combined neural classifiers , 1996, Pattern Recognit..

[92]  C H Chen,et al.  Information processing for remote sensing , 1999 .

[93]  Yung-Sheng Chen,et al.  Color image segmentation using a self-organizing map algorithm , 2002, J. Electronic Imaging.

[94]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[95]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[96]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[97]  Amanda J. C. Sharkey,et al.  On Combining Artificial Neural Nets , 1996, Connect. Sci..

[98]  Martin E. Hellman,et al.  The Nearest Neighbor Classification Rule with a Reject Option , 1970, IEEE Trans. Syst. Sci. Cybern..

[99]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[100]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[101]  Xavier Otazu,et al.  Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[102]  Philip H. Swain,et al.  Remote Sensing: The Quantitative Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[103]  Gang Xu,et al.  Information fusion for rural land-use classification with high-resolution satellite imagery , 2003, IEEE Trans. Geosci. Remote. Sens..