Quantifying Bio-Engineering: The Importance of Biophysics in Biofuel Research

Patanjali Varanasi1,2,3, Lan Sun1,2,3, Bernhard Knierim1,2, Elena Bosneaga2,4, Purbasha Sarkar2,4, Seema Singh1,3 and Manfred Auer1,2,4 1Joint BioEnergy Institute, Physical Biosciences Division Lawrence Berkeley National Laboratory, Emeryville, CA 2Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 3Sandia National Laboratories, Biomass Science and Conversion Technology Department, Livermore, CA 4Energy Biosciences Institute, UC Berkeley, CA United States

[1]  N. Carpita,et al.  A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. , 1998, The Plant journal : for cell and molecular biology.

[2]  J. J. Taylor,et al.  Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. , 1997, The Plant cell.

[3]  S. Tsujiyama,et al.  Assignment of DSC thermograms of wood and its components , 2000 .

[4]  G. Carr High-resolution microspectroscopy and sub-nanosecond time-resolved spectroscopy with the synchrotron infrared source , 1999 .

[5]  L. Davis,et al.  Infrared imaging of sunflower and maize root anatomy. , 2007, Journal of agricultural and food chemistry.

[6]  Ryan T Gill,et al.  Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli , 2009, Biotechnology for biofuels.

[7]  Xuefeng Lu,et al.  Overproduction of free fatty acids in E. coli: implications for biodiesel production. , 2008, Metabolic engineering.

[8]  Horst Czichos,et al.  Springer Handbook of Materials Measurement Methods , 2006 .

[9]  Sergei V. Levchik,et al.  Comparative study of the thermal decomposition of pure cellulose and pulp paper , 1995 .

[10]  J. Obst,et al.  Heterogeneity of lignin concentration in cell corner middle lamella of white birch and black spruce , 1996, Wood Science and Technology.

[11]  E. Koukios,et al.  Two-stage acid-catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures , 1995 .

[12]  T. Vuorinen,et al.  A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine (Pinus sylvestris) wood. Part I: lipophilic compounds. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[13]  K. Fackler,et al.  CHARACTERIZATION OF KEY PARAMETERS FOR BIOTECHNOLOGICAL LIGNOCELLULOSE CONVERSION ASSESSED BY FT-NIR SPECTROSCOPY. PART II: QUANTITATIVE ANALYSIS BY PARTIAL LEAST SQUARES REGRESSION , 2010 .

[14]  Alvin R. Womac,et al.  Switchgrass ultimate stresses at typical biomass conditions available for processing , 2006 .

[15]  Notburga Gierlinger,et al.  Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging , 2007, Planta.

[16]  William S York,et al.  A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies1[W][OA] , 2010, Plant Physiology.

[17]  R. Dixon,et al.  Improving Saccharification Efficiency of Alfalfa Stems Through Modification of the Terminal Stages of Monolignol Biosynthesis , 2008, BioEnergy Research.

[18]  D. Stewart,et al.  Fourier-Transform Infrared and Raman Spectroscopic Study of Biochemical and Chemical Treatments of Oak Wood (Quercus rubra) and Barley (Hordeum vulgare) Straw , 1995 .

[19]  Fernando Wypych,et al.  Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. , 2003, Bioresource technology.

[20]  Helena Pereira,et al.  Calibration of NIR to assess lignin composition (H/G ratio) in maritime pine wood using analytical pyrolysis as the reference method , 2006 .

[21]  P. Adams,et al.  Raman imaging of cell wall polymers in Arabidopsis thaliana. , 2010, Biochemical and biophysical research communications.

[22]  Staffan Persson,et al.  Toward a Systems Approach to Understanding Plant Cell Walls , 2004, Science.

[23]  D. Evtuguin,et al.  Effect of Structural Features of Wood Biopolymers on Hardwood Pulping and Bleaching Performance , 2005 .

[24]  L. Davis,et al.  Use of Infrared Microspectroscopy in Plant Growth and Development , 2005 .

[25]  H. Grethlein,et al.  Common aspects of acid prehydrolysis and steam explosion for pretreating wood , 1991 .

[26]  Herman Höfte,et al.  Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. , 2003, The Plant journal : for cell and molecular biology.

[27]  David K. Johnson,et al.  Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production , 2007, Science.

[28]  Michael D. Morris,et al.  Modern Raman Spectroscopy: A Practical Approach , 2006 .

[29]  R. Zhong,et al.  A Katanin-like Protein Regulates Normal Cell Wall gBiosynthesis and Cell Elongation , 2001, Plant Cell.

[30]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[31]  K. Ruel,et al.  On the Cytochemistry of Cell Wall Formation in Poplar Trees , 2002 .

[32]  G. van der Velde,et al.  Effects of waves on helophyte stands: mechanical characteristics of stems of Phragmites australis and Scirpus lacustris , 1996 .

[33]  C. Halpin,et al.  Effect of down-regulation of cinnamyl alcohol dehydrogenase on cell wall composition and on degradability of tobacco stems , 1998 .

[34]  Brigitte Chabbert,et al.  Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility , 1999, Plant Molecular Biology.

[35]  B. Simmons,et al.  Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. , 2010, Bioresource technology.

[36]  U. Kim,et al.  Thermal decomposition of native cellulose: Influence on crystallite size , 2010 .

[37]  A. Showalter,et al.  IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. , 2010, Molecular plant.

[38]  N. Marinkovic,et al.  Chemical imaging of microstructures of plant tissues within cellular dimension using synchrotron infrared microspectroscopy. , 2003, Journal of agricultural and food chemistry.

[39]  J. Sweedler,et al.  Base-induced delignification of Miscanthus x giganteus studied by three-dimensional confocal Raman imaging. , 2010, Bioresource technology.

[40]  B. Wood,et al.  Focal plane array infrared imaging: a new way to analyse leaf tissue. , 2007, The New phytologist.

[41]  John Ralph,et al.  Derivatization Followed by Reductive Cleavage (DFRC Method), a New Method for Lignin Analysis: Protocol for Analysis of DFRC Monomers , 1997 .

[42]  V. Chiang,et al.  The Difference between Guaiacyl and Guaiacyl-Syringyl Lignins in their Responses to Kraft Delignification , 1990 .

[43]  Michael Ladisch,et al.  Deactivation of cellulases by phenols. , 2011, Enzyme and microbial technology.

[44]  Maureen C. McCann,et al.  Direct visualization of cross-links in the primary plant cell wall , 1990 .

[45]  J. M. Seguí-Simarro,et al.  Plant Cytokinesis - Insights Gained from Electron Tomography Studies , 2007 .

[46]  C. Dai,et al.  Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity , 2007 .

[47]  G. Bonn,et al.  GC-MS and HPLC analyses of lignin degradation products in biomass hydrolyzates , 1986 .

[48]  Q. Qian,et al.  BRITTLE CULM1, Which Encodes a COBRA-Like Protein, Affects the Mechanical Properties of Rice Plants Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.011775. , 2003, The Plant Cell Online.

[49]  Staffan Persson,et al.  The Arabidopsis irregular xylem8 Mutant Is Deficient in Glucuronoxylan and Homogalacturonan, Which Are Essential for Secondary Cell Wall Integrity[W] , 2007, The Plant Cell Online.

[50]  Yining Zeng,et al.  Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. , 2010, Angewandte Chemie.

[51]  P. Fratzl,et al.  Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging , 2009, Journal of experimental botany.

[52]  J. Banfield,et al.  Correlative microscopy for phylogenetic and ultrastructural characterization of microbial communities. , 2012, Environmental microbiology reports.

[53]  Yinjie J. Tang,et al.  Pathway Confirmation and Flux Analysis of Central Metabolic Pathways in Desulfovibrio vulgaris Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry , 2006, Journal of bacteriology.

[54]  Michael R. Ladisch,et al.  Inhibition of cellulases by phenols , 2010 .

[55]  Phani Adapa,et al.  Potential Applications of Infrared and Raman Spectromicroscopy for Agricultural Biomass , 2009 .

[56]  Richard A Dixon,et al.  Lignin modification improves fermentable sugar yields for biofuel production , 2007, Nature Biotechnology.

[57]  K. Iiyama,et al.  Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin , 2009, Wood Science and Technology.

[58]  J. Reeves,et al.  Analytical pyrolysis as a tool to determine chemical changes in maize stovers during growth , 1997 .

[59]  A. Stipanovic,et al.  High-resolution Thermogravimetric Analysis For Rapid Characterization of Biomass Composition and Selection of Shrub Willow Varieties , 2008, Applied biochemistry and biotechnology.

[60]  Yonglai Lu,et al.  A Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). , 2006, Annals of botany.

[61]  S. Saka,et al.  GC-MS and IR spectroscopic analyses of the lignin-derived products from softwood and hardwood treated in supercritical water , 2005, Journal of Wood Science.

[62]  R. Dixon,et al.  Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases , 2001, Transgenic Research.

[63]  Tobias I. Baskin,et al.  Disorganization of Cortical Microtubules Stimulates Tangential Expansion and Reduces the Uniformity of Cellulose Microfibril Alignment among Cells in the Root of Arabidopsis1 , 2004, Plant Physiology.

[64]  J. Grima-Pettenati,et al.  Review Article Genetic manipulation of lignin profiles: a realistic challenge towards the qualitative improvement of plant biomass , 1998 .

[65]  Keiko Sugimoto-Shirasu,et al.  Tensile Properties of Arabidopsis Cell Walls Depend on Both a Xyloglucan Cross-Linked Microfibrillar Network and Rhamnogalacturonan II-Borate Complexes1 , 2003, Plant Physiology.

[66]  R. Reed,et al.  An Electron Microscope Study of Cellulose in the Wall of Valonia Ventricosa , 1948, Nature.

[67]  Manfred Auer,et al.  High-pressure freezing, cellular tomography, and structural cell biology. , 2006, BioTechniques.

[68]  K. Niklas,et al.  The Cell Walls that Bind the Tree of Life , 2004 .

[69]  Tetsuya Sakurai,et al.  PRIMe: A Web Site That Assembles Tools for Metabolomics and Transcriptomics , 2008, Silico Biol..

[70]  Danny E. Akin,et al.  Near-infrared Fourier-transform Raman spectroscopy of flax (Linum usitatissimum L.) stems , 1998 .

[71]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[72]  A. Ragauskas,et al.  Structural Characterization and Comparison of Switchgrass Ball-milled Lignin Before and After Dilute Acid Pretreatment , 2010, Applied biochemistry and biotechnology.

[73]  T. Vuorinen,et al.  A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine (Pinus sylvestris) wood. Part II. Hydrophilic compounds. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[74]  J. Knox Revealing the structural and functional diversity of plant cell walls. , 2008, Current opinion in plant biology.

[75]  M. McCann,et al.  Orientation of macromolecules in the walls of elongating carrot cells. , 1993, Journal of cell science.

[76]  J. Menczel,et al.  The thermal analysis of fibers in the twenty first century: From textile, industrial and composite to nano, bio and multi-functional , 2006 .

[77]  K. V. Krishnamurthy Methods in Cell Wall Cytochemistry , 1999 .

[78]  D. Danon,et al.  ON THE DIMENSIONS OF CELLULOSE MICROFIBRILS , 1964, The Journal of cell biology.

[79]  Seema Singh,et al.  Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass , 2009, Biotechnology and bioengineering.

[80]  P. Adams,et al.  Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa , 2009, Planta.

[81]  K. Waldron,et al.  The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. , 2000, Plant physiology.

[82]  Steven R. Thomas,et al.  Simultaneous saccharification and fermentation of pretreated hardwoods , 1997 .

[83]  T. Müller-Reichert,et al.  Cryomethods for thin section electron microscopy. , 2002, Methods in enzymology.

[84]  Lu,et al.  The DFRC Method for Lignin Analysis. 4. Lignin Dimers Isolated from DFRC-Degraded Loblolly Pine Wood. , 1998, Journal of agricultural and food chemistry.

[85]  R. Zhong,et al.  The Arabidopsis RHD 3 gene is required for cell wall biosynthesis and actin organization , 2003 .

[86]  J. Kadla,et al.  Hydrogen bonding in lignin: a Fourier transform infrared model compound study. , 2005, Biomacromolecules.

[87]  John K. Stevens,et al.  Computer-Assisted Reconstruction from Serial Electron Micrographs: A Tool for the Systematic Study of Neuronal form and Function , 1984 .

[88]  S. Ralph,et al.  FT-Raman Spectroscopy of Wood: Identifying Contributions of Lignin and Carbohydrate Polymers in the Spectrum of Black Spruce (Picea Mariana) , 1997 .

[89]  W. G. Glasser,et al.  Lignin Impact on Fiber Degradation. 3. Reversal of Inhibition of Enzymatic Hydrolysis by Chemical Modification of Lignin and by Additives , 1997 .

[90]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.

[91]  G. Pearce,et al.  Effects of chemical treatments combined with high-pressure steaming on the chemical composition and in vitro digestibility of crop by-products , 1983 .

[92]  U. Agarwal,et al.  Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana) , 2006, Planta.

[93]  K. Fackler,et al.  Characterization of key parameters for biotechnological lignocellulose conversion assessed by FT-NIR spectroscopy. Part 1. Qualitative analysis of pretreated straw , 2010, BioResources.

[94]  R. Zhong,et al.  FRAGILE FIBER3, an Arabidopsis Gene Encoding a Type II Inositol Polyphosphate 5-Phosphatase, Is Required for Secondary Wall Synthesis and Actin Organization in Fiber Cells , 2004, The Plant Cell Online.

[95]  R. Zhong,et al.  Arabidopsis irregular xylem8 and irregular xylem9: Implications for the Complexity of Glucuronoxylan Biosynthesis[W] , 2007, The Plant Cell Online.

[96]  M. Auer,et al.  Plant cell walls throughout evolution: towards a molecular understanding of their design principles. , 2009, Journal of experimental botany.

[97]  B. Chabbert,et al.  Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus. , 2010, Bioresource technology.

[98]  R. Zhong,et al.  Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis , 2007, Planta.

[99]  R. Zhong,et al.  The Arabidopsis Family GT43 Glycosyltransferases Form Two Functionally Nonredundant Groups Essential for the Elongation of Glucuronoxylan Backbone1[W][OA] , 2010, Plant Physiology.

[100]  G. Kraepelin,et al.  Differential scanning calorimetry as a complementary tool in wood biodegradation studies , 1987 .

[101]  Ping Xu,et al.  Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils , 2007, Wood Science and Technology.

[102]  M. Auer,et al.  The cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development. , 2011, Molecular plant.

[103]  G. Aronne,et al.  Combined histochemistry and autofluorescence for identifying lignin distribution in cell walls , 2007, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[104]  M. Montagu,et al.  Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively , 1998 .

[105]  B. Dale,et al.  Determination of cellulose accessibility by differential scanning calorimetry , 1986 .

[106]  Seema Singh,et al.  Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral Raman imaging , 2011, Biotechnology and bioengineering.

[107]  R. Zhong,et al.  Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. , 2009, Plant & cell physiology.

[108]  C. Chapple,et al.  Altered Growth and Cell Walls in a Fucose-Deficient Mutant of Arabidopsis , 1993, Science.

[109]  L. Angelini,et al.  Thermal analysis of biomass and corresponding pyrolysis products , 1996 .

[110]  J. Wilkinson,et al.  Ensiled alkali-treated straw. I. Effect of level and type of alkali on the composition and digestibility in vitro of ensiled barley straw , 1978 .

[111]  H. Portugal,et al.  Chemical and thermal analysis of the biopolymers in thyme (Thymus vulgaris) , 2003 .

[112]  Tapani Vuorinen,et al.  Ultra Violet Resonance Raman Spectroscopy in Lignin Analysis: Determination of Characteristic Vibrations of p-Hydroxyphenyl, Guaiacyl, and Syringyl Lignin Structures , 2003, Applied spectroscopy.

[113]  J. Ralph,et al.  NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[114]  A. Heyn The elementary fibril and supermolecular structure of cellulose in soft wood fiber. , 1969, Journal of ultrastructure research.

[115]  M. Ladisch,et al.  Effect of pretreatments and fermentation on pore size in cellulosic materials , 1985, Biotechnology and bioengineering.

[116]  Z. Popper Evolution and diversity of green plant cell walls. , 2008, Current opinion in plant biology.

[117]  B. Simmons,et al.  Understanding the impact of ionic liquid pretreatment on eucalyptus , 2010 .

[118]  J. Ralph,et al.  DFRC Method for Lignin Analysis. 1. New Method for β-Aryl Ether Cleavage: Lignin Model Studies , 1997 .

[119]  F. Lu,et al.  The DFRC Method for Lignin Analysis. 6. A Simple Modification for Identifying Natural Acetates on Lignins , 1998 .

[120]  J. Rencoret,et al.  Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study. , 2007, Journal of agricultural and food chemistry.

[121]  Gerald A Tuskan,et al.  Variation of S/G ratio and lignin content in a Populus family influences the release of xylose by dilute acid hydrolysis , 2006, Applied biochemistry and biotechnology.

[122]  Notburga Gierlinger,et al.  Chemical Imaging of Poplar Wood Cell Walls by Confocal Raman Microscopy , 2006, Plant Physiology.

[123]  J. Ralph,et al.  Pyrolysis-GC-MS characterization of forage materials , 1991 .

[124]  Gerhard Wanner,et al.  Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. , 2003, Journal of structural biology.

[125]  C. Oommen,et al.  The Role of Interface Modification on Thermal Degradation and Crystallization Behavior of Composites from Commingled Polypropylene Fiber and Banana Fiber , 2009 .

[126]  A. Ragauskas,et al.  Surface Characterization of Dilute Acid Pretreated Populus deltoides by ToF-SIMS , 2010 .

[127]  Notburga Gierlinger,et al.  The potential of Raman microscopy and Raman imaging in plant research , 2007 .

[128]  M. Bertness,et al.  Structural interdependence : an ecological consequence of morphological responses to crowding in marsh plants , 1996 .

[129]  Jay H. Lee,et al.  Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate , 2010, The FEBS journal.

[130]  A. Frey-wyssling The ultrastructure of wood , 1968, Wood Science and Technology.

[131]  Staffan Persson,et al.  Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis , 2007, Proceedings of the National Academy of Sciences.

[132]  Jane A Dickerson,et al.  Current Applications of Liquid Chromatography / Mass Spectrometry in Pharmaceutical Discovery After a Decade of Innovation , 2008 .

[133]  P. Couchman The effect of degree of polymerization on glass-transition temperatures , 1981 .

[134]  J. Liao,et al.  Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels , 2008, Nature.

[135]  J. Dubochet,et al.  Cryo-electron microscopy of vitreous sections of native biological cells and tissues. , 2004, Journal of structural biology.

[136]  J. Ralph,et al.  The DFRC method for lignin analysis. 7. Behavior of cinnamyl end groups. , 1999, Journal of agricultural and food chemistry.

[137]  K. McDonald,et al.  High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. , 1999, Methods in molecular biology.

[138]  A R Womac,et al.  Knife grid size reduction to pre-process packed beds of high- and low-moisture switchgrass. , 2008, Bioresource technology.

[139]  Michael E Himmel,et al.  The maize primary cell wall microfibril: a new model derived from direct visualization. , 2006, Journal of agricultural and food chemistry.

[140]  N. Carpita,et al.  Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. , 1993, The Plant journal : for cell and molecular biology.

[141]  Ingo Burgert,et al.  In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. , 2008, Biomacromolecules.

[142]  R. Zhong,et al.  A Kinesin-Like Protein Is Essential for Oriented Deposition of Cellulose Microfibrils and Cell Wall Strength Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.005801. , 2002, The Plant Cell Online.

[143]  Huawu Liu,et al.  Mechanical performance and cellulose microfibrils in wood with high S2 microfibril angles , 2011 .