Locally weighted polynomial regression: Parameter choice and application to forecasts of the Great Salt Lake

[1] Relationships between hydrologic variables are often nonlinear. Usually, the functional form of such a relationship is not known a priori. A multivariate, nonparametric regression methodology is provided here for approximating the underlying regression function using locally weighted polynomials. Locally weighted polynomials consider the approximation of the target function through a Taylor series expansion of the function in the neighborhood of the point of estimate. Cross-validatory procedures for the selection of the size of the neighborhood over which this approximation should take place and for the order of the local polynomial to use are provided and shown for some simple situations. The utility of this nonparametric regression approach is demonstrated through an application to nonparametric short-term forecasts of the biweekly Great Salt Lake volume. Blind forecasts up to 1 year in the future using the 1847–2004 time series of the Great Salt Lake are presented.

[1]  Upmanu Lall,et al.  Nonlinear Dynamics of the Great Salt Lake: Nonparametric Short-Term Forecasting , 1996 .

[2]  Wolfgang Härdle How to determine the bandwidth of some nonlinear smoothers in practice , 1984 .

[3]  Moon,et al.  Estimation of mutual information using kernel density estimators. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  M. Wand Local Regression and Likelihood , 2001 .

[5]  W. Härdle Applied Nonparametric Regression , 1992 .

[6]  Upmanu Lall,et al.  Nonlinear dynamics of the Great Salt Lake: system identification and prediction , 1996 .

[7]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[8]  J. Franklin,et al.  The elements of statistical learning: data mining, inference and prediction , 2005 .

[9]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[10]  W. Cleveland,et al.  Regression by local fitting: Methods, properties, and computational algorithms , 1988 .

[11]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[12]  Upmanu Lall,et al.  Nonlinear dynamics and the Great Salt Lake: A predictable indicator of regional climate , 1996 .

[13]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[14]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[15]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[16]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[17]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[18]  J. Friedman Multivariate adaptive regression splines , 1990 .

[19]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[20]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[21]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[22]  D. Helsel,et al.  Statistical methods in water resources , 2020, Techniques and Methods.

[23]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[24]  Ker-Chau Li,et al.  From Stein's Unbiased Risk Estimates to the Method of Generalized Cross Validation , 1985 .

[25]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[26]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[27]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[28]  Howell Tong,et al.  Non-Linear Time Series , 1990 .

[29]  Frederick Robertson Macaulay,et al.  The Smoothing of Time Series , 1931 .

[30]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[31]  Upmanu Lall,et al.  Recent advances in nonparametric function estimation: Hydrologic applications , 1995 .

[32]  H. Müller Weighted Local Regression and Kernel Methods for Nonparametric Curve Fitting , 1987 .

[33]  B. Yandell Spline smoothing and nonparametric regression , 1989 .

[34]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[35]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[36]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[37]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[38]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[39]  H. Tong,et al.  On prediction and chaos in stochastic systems , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.