Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas.

DNA origami is a powerful approach for assembling plasmonic nanoparticle dimers and Raman dyes with high yields and excellent positioning control. Here we show how optothermal-induced shrinking of a DNA origami template can be employed to control the gap sizes between two 40 nm gold nanoparticles in a range from 1 to 2 nm. The high field confinement achieved with this optothermal approach was demonstrated by detection of surface-enhanced Raman spectroscopy (SERS) signals from single molecules that are precisely placed within the DNA origami template that spans the nanoparticle gap. By comparing the SERS intensity with respect to the field enhancement in the plasmonic hot-spot region, we found good agreement between measurement and theory. Our straightforward approach for the fabrication of addressable plasmonic nanosensors by DNA origami demonstrates a path toward future sensing applications with single-molecule resolution.

[1]  T. Liedl,et al.  Nucleic acid nanostructures for biomedical applications. , 2013, Nanomedicine.

[2]  J. Nam,et al.  Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. , 2014, Nano letters.

[3]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[4]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[5]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[6]  J. Nam,et al.  Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering. , 2013, Nano letters.

[7]  Päivi Törmä,et al.  DNA origami as a nanoscale template for protein assembly , 2009, Nanotechnology.

[8]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[9]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[10]  R. Callender,et al.  The resonance Raman spectra of some cyanine dyes , 1985 .

[11]  Tim Liedl,et al.  Cellular immunostimulation by CpG-sequence-coated DNA origami structures. , 2011, ACS nano.

[12]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[13]  Yamuna Krishnan,et al.  Designing DNA nanodevices for compatibility with the immune system of higher organisms. , 2015, Nature nanotechnology.

[14]  Adrian Keller,et al.  DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering , 2013 .

[15]  M. Lieberman,et al.  Thermal stability of DNA origami on mica , 2014 .

[16]  T. Klar,et al.  Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. , 2008, Physical review letters.

[17]  I. Lednev,et al.  A Raman spectroscopic study of indolinium steryl dyes , 1992 .

[18]  P. Etchegoin,et al.  Resolving single molecules in surface-enhanced Raman scattering within the inhomogeneous broadening of Raman peaks. , 2010, Analytical chemistry.

[19]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[20]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[21]  M. Bossi,et al.  Mapping the fluorescence performance of a photochromic-fluorescent system coupled with gold nanoparticles at the single-molecule-single-particle level. , 2014, Journal of the American Chemical Society.

[22]  Volker Deckert,et al.  Distinction of nucleobases – a tip-enhanced Raman approach , 2011, Beilstein journal of nanotechnology.

[23]  J. Feldmann,et al.  Shrink‐to‐fit Plasmonic Nanostructures , 2013 .

[24]  J. Irudayaraj,et al.  Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  M. Kawasaki,et al.  Raman spectra of some indo‐, thia‐ and selena‐carbocyanine dyes , 1988 .

[26]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[27]  A. Nguyen,et al.  Theoretical Study of the Interaction between Thymine and Water. Protonation and Deprotonation Enthalpies and Comparison with Uracil , 1998 .

[28]  Tim Liedl,et al.  DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies , 2015, Nano letters.

[29]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[30]  N. Halas,et al.  Surface-enhanced Raman spectroscopy of DNA. , 2008, Journal of the American Chemical Society.

[31]  L. Movileanu,et al.  Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT). , 2002, Biopolymers.

[32]  Tim Liedl,et al.  Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. , 2014, Nano letters.

[33]  Veikko Linko,et al.  A modular DNA origami-based enzyme cascade nanoreactor. , 2015, Chemical communications.

[34]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[35]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[36]  Yu-lin Xu,et al.  ELECTROMAGNETIC SCATTERING BY AN AGGREGATE OF SPHERES : THEORETICAL AND EXPERIMENTAL STUDY OF THE AMPLITUDE SCATTERING MATRIX , 1998 .

[37]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[38]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[39]  L. A. Lipscomb,et al.  Surface-enhanced hyper-Raman spectroscopy with a picosecond laser. New vibrational information for non-centrosymmetric carbocyanine molecules adsorbed on colloidal silver , 1990 .

[40]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[41]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[42]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[43]  Tao Zhang,et al.  Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. , 2013, Nature nanotechnology.

[44]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[45]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[46]  Hyojeong Kim,et al.  Stability of DNA Origami Nanostructure under Diverse Chemical Environments , 2014 .

[47]  T. LaBean,et al.  Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. , 2013, Nano letters.

[48]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[49]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[50]  Cheng Zong,et al.  Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. , 2015, Journal of the American Chemical Society.