ON OPTIMAL EXPERIMENTAL DESIGNS FOR SPARSE POLYNOMIAL CHAOS EXPANSIONS

Uncertainty quantification (UQ) has received much attention in the literature in the past decade. In this context, Sparse Polynomial chaos expansions (PCE) have been shown to be among the most promising methods because of their ability to model highly complex models at relatively low computational costs. A least-square minimization technique may be used to determine the coefficients of the sparse PCE by relying on the so called experimental design (ED), i.e. the sample points where the original computational model is evaluated. An efficient sampling strategy is then needed to generate an accurate PCE at low computational cost. This paper is concerned with the problem of identifying an optimal experimental design that maximizes the accuracy of the surrogate model over the whole input space within a given computational budget. A novel sequential adaptive strategy where the ED is enriched sequentially by capitalizing on the sparsity of the underlying metamodel is introduced. A comparative study between several state-of-the-art methods is performed on four numerical models with varying input dimensionality and computational complexity. It is shown that the optimal sequential design based on the S-value criterion yields accurate, stable and computationally efficient PCE.

[1]  Pierric Kersaudy,et al.  Modélisation statistique de l'exposition humaine aux ondes radiofréquences , 2015 .

[2]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[3]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[4]  Alan J. Miller,et al.  A Fedorov Exchange Algorithm for D-optimal Design , 1994 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[7]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[8]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[9]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[10]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[11]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[12]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[13]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[14]  Dongbin Xiu,et al.  Nonadaptive Quasi-Optimal Points Selection for Least Squares Linear Regression , 2016, SIAM J. Sci. Comput..

[15]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[16]  M. Isabel Reis dos Santos,et al.  Sequential designs for simulation experiments: nonlinear regression metamodeling , 2007 .

[17]  Gijs Rennen,et al.  Subset selection from large datasets for Kriging modeling , 2008 .

[18]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[19]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[20]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[21]  Timothy W. Simpson,et al.  Model Validation and Error Modeling to Support Sequential Sampling , 2008, DAC 2008.

[22]  R. Grandhi,et al.  Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .

[23]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[24]  T. Ishigami,et al.  An importance quantification technique in uncertainty analysis for computer models , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.

[25]  S. S. Ravi,et al.  Facility Dispersion Problems: Heuristics and Special Cases (Extended Abstract) , 1991, WADS.

[26]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[27]  T. Hesterberg,et al.  Least angle and ℓ1 penalized regression: A review , 2008, 0802.0964.

[28]  Samih Zein,et al.  An Efficient Sampling Method for Regression-Based Polynomial Chaos Expansion , 2013 .

[29]  G. G. Wang,et al.  Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .

[30]  Seymour Geisser,et al.  The Predictive Sample Reuse Method with Applications , 1975 .

[31]  B. Sudret,et al.  Reliability analysis of high-dimensional models using low-rank tensor approximations , 2016, 1606.08577.

[32]  Stefano Marelli,et al.  UQLab: a framework for uncertainty quantification in MATLAB , 2014 .

[33]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[34]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[35]  Jerome Sacks,et al.  Integrated circuit design optimization using a sequential strategy , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[36]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..

[37]  A. Saltelli,et al.  Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques , 2015, 1505.02350.

[38]  Ruichen Jin,et al.  On Sequential Sampling for Global Metamodeling in Engineering Design , 2002, DAC 2002.

[39]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[40]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .

[41]  Michael S. Eldred,et al.  OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR COMPUTATIONAL SIMULATIONS , 2003 .

[42]  Luc Pronzato,et al.  Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.

[43]  Layne T. Watson,et al.  Pitfalls of using a single criterion for selecting experimental designs , 2008 .

[44]  Bruno Sudret,et al.  Global sensitivity analysis using low-rank tensor approximations , 2016, Reliab. Eng. Syst. Saf..

[45]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[46]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[47]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[48]  Bruno Sudret,et al.  Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions , 2015, J. Comput. Phys..

[49]  Tom Dhaene,et al.  Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling , 2011, Eur. J. Oper. Res..

[50]  Mathilde Chevreuil,et al.  A Least-Squares Method for Sparse Low Rank Approximation of Multivariate Functions , 2015, SIAM/ASA J. Uncertain. Quantification.

[51]  Bertrand Iooss,et al.  Numerical studies of the metamodel fitting and validation processes , 2010, 1001.1049.