ON OPTIMAL EXPERIMENTAL DESIGNS FOR SPARSE POLYNOMIAL CHAOS EXPANSIONS
暂无分享,去创建一个
S. Marelli | B. Sudret | N. Fajraoui | S. Marelli | B. Sudret | N. Fajraoui
[1] Pierric Kersaudy,et al. Modélisation statistique de l'exposition humaine aux ondes radiofréquences , 2015 .
[2] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .
[3] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[4] Alan J. Miller,et al. A Fedorov Exchange Algorithm for D-optimal Design , 1994 .
[5] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[6] Abubakr Gafar Abdalla,et al. Probability Theory , 2017, Encyclopedia of GIS.
[7] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[8] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .
[9] Douglas C. Montgomery,et al. Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .
[10] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[11] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[12] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[13] M. Lemaire,et al. Stochastic finite element: a non intrusive approach by regression , 2006 .
[14] Dongbin Xiu,et al. Nonadaptive Quasi-Optimal Points Selection for Least Squares Linear Regression , 2016, SIAM J. Sci. Comput..
[15] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[16] M. Isabel Reis dos Santos,et al. Sequential designs for simulation experiments: nonlinear regression metamodeling , 2007 .
[17] Gijs Rennen,et al. Subset selection from large datasets for Kriging modeling , 2008 .
[18] Runze Li,et al. Design and Modeling for Computer Experiments , 2005 .
[19] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[20] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[21] Timothy W. Simpson,et al. Model Validation and Error Modeling to Support Sequential Sampling , 2008, DAC 2008.
[22] R. Grandhi,et al. Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .
[23] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[24] T. Ishigami,et al. An importance quantification technique in uncertainty analysis for computer models , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.
[25] S. S. Ravi,et al. Facility Dispersion Problems: Heuristics and Special Cases (Extended Abstract) , 1991, WADS.
[26] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[27] T. Hesterberg,et al. Least angle and ℓ1 penalized regression: A review , 2008, 0802.0964.
[28] Samih Zein,et al. An Efficient Sampling Method for Regression-Based Polynomial Chaos Expansion , 2013 .
[29] G. G. Wang,et al. Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .
[30] Seymour Geisser,et al. The Predictive Sample Reuse Method with Applications , 1975 .
[31] B. Sudret,et al. Reliability analysis of high-dimensional models using low-rank tensor approximations , 2016, 1606.08577.
[32] Stefano Marelli,et al. UQLab: a framework for uncertainty quantification in MATLAB , 2014 .
[33] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[34] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[35] Jerome Sacks,et al. Integrated circuit design optimization using a sequential strategy , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[36] Khachik Sargsyan,et al. Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..
[37] A. Saltelli,et al. Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques , 2015, 1505.02350.
[38] Ruichen Jin,et al. On Sequential Sampling for Global Metamodeling in Engineering Design , 2002, DAC 2002.
[39] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[40] Timothy W. Simpson,et al. Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .
[41] Michael S. Eldred,et al. OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR COMPUTATIONAL SIMULATIONS , 2003 .
[42] Luc Pronzato,et al. Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.
[43] Layne T. Watson,et al. Pitfalls of using a single criterion for selecting experimental designs , 2008 .
[44] Bruno Sudret,et al. Global sensitivity analysis using low-rank tensor approximations , 2016, Reliab. Eng. Syst. Saf..
[45] Timothy W. Simpson,et al. Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.
[46] Stéphane Mallat,et al. Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..
[47] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[48] Bruno Sudret,et al. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions , 2015, J. Comput. Phys..
[49] Tom Dhaene,et al. Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling , 2011, Eur. J. Oper. Res..
[50] Mathilde Chevreuil,et al. A Least-Squares Method for Sparse Low Rank Approximation of Multivariate Functions , 2015, SIAM/ASA J. Uncertain. Quantification.
[51] Bertrand Iooss,et al. Numerical studies of the metamodel fitting and validation processes , 2010, 1001.1049.