Neutrino event selection in the MicroBooNE liquid argon time projection chamber using Wire-Cell 3D imaging, clustering, and charge-light matching

An accurate and efficient event reconstruction is required to realize the full scientific capability of liquid argon time projection chambers (LArTPCs). The current and future neutrino experiments that rely on massive LArTPCs create a need for new ideas and reconstruction approaches. Wire-Cell, proposed in recent years, is a novel tomographic event reconstruction method for LArTPCs. The Wire-Cell 3D imaging approach capitalizes on charge, sparsity, time, and geometry information to reconstruct a topology-agnostic 3D image of the ionization electrons prior to pattern recognition. A second novel method, the many-to-many charge-light matching, then pairs the TPC charge activity to the detected scintillation light signal, thus enabling a powerful rejection of cosmic-ray muons in the MicroBooNE detector. A robust processing of the scintillation light signal and an appropriate clustering of the reconstructed 3D image are fundamental to this technique. In this paper, we describe the principles and algorithms of these techniques and their successful application in the MicroBooNE experiment. A quantitative evaluation of the performance of these techniques is presented. Using these techniques, a 95% efficient pre-selection of neutrino charged-current events is achieved with a 30-fold reduction of non-beam-coincident cosmic-ray muons, and about 80% of the selected neutrino charged-current events are reconstructed with at least 70% completeness and 80% purity.

R. K. Neely | J. I. Crespo-Anadón | M. Convery | V. Radeka | K. Mason | M. Murphy | A. Ereditato | G. Cerati | T. Bolton | M. Mooney | S. Gollapinni | J. Asaadi | H. Greenlee | W. Ketchum | M. Kirby | S. Söldner-Rembold | Y. Tsai | J. Zennamo | S. Wolbers | T. Yang | T. Usher | P. Spentzouris | M. Bishai | M. Rosenberg | D. Franco | B. Viren | W. Wu | E. Church | R. Guenette | V. Papavassiliou | M. Wospakrik | L. Ren | A. Marchionni | G. Barr | G. Zeller | K. Mistry | S. Prince | M. Weber | J. St. John | H. Wei | O. Palamara | V. Paolone | P. Nienaber | D. Naples | L. Camilleri | G. Horton-Smith | M. Shaevitz | J. Spitz | K. Terao | M. Toups | S. Balasubramanian | C. Zhang | W. Louis | N. Tagg | S. Dytman | P. Guzowski | B. Kirby | I. Kreslo | J. Nowak | J. Raaf | T. Strauss | T. Wongjirad | Y. Chen | W. Gu | X. Ji | B. Littlejohn | X. Qian | B. Baller | F. Cavanna | B. Fleming | C. James | G. Karagiorgi | C. Mariani | J. Marshall | C. Moore | Ž. Pavlović | L. Rochester | D. Schmitz | M. Soderberg | M. Stancari | A. Szelc | A. Blake | S. Tufanli | S. Berkman | K. Duffy | A. Furmanski | P. Hamilton | J. H. Jo | M. del Tutto | I. Lepetic | A. Schukraft | R. An | N. Foppiani | E. Gramellini | C. Barnes | A. Hourlier | R. Sharankova | E. Huang | W. Tang | N. McConkey | B. Eberly | J. Mousseau | P. Green | S. Gardiner | A. Papadopoulou | V. Basque | D. Caratelli | R. Diurba | L. Dominé | R. Fitzpatrick | D. Garcia-Gamez | G. Ge | O. Goodwin | R. Itay | L. Jiang | Y. Jwa | R. LaZur | D. Lorca | X. Luo | J. Martín-Albo | A. Mastbaum | J. Mills | T. Mohayai | J. Moon | A. Moor | A. Paudel | A. Rafique | M. Reggiani-Guzzo | H. Rogers | B. Russell | J. Sinclair | A. Smith | M. Uchida | Z. Williams | R. Dorrill | P. Abratenko | M. Alrashed | J. Anthony | A. Ashkenazi | L. Bathe-Peters | O. Benevides Rodrigues | A. Bhanderi | A. Bhat | I. Caro Terrazas | R. Castillo Fernandez | D. Cianci | L. Cooper-Troendle | D. Devitt | L. Escudero Sanchez | G. Fiorentini Aguirre | E. Hall | O. Hen | J. Jan de Vries | N. Kamp | T. Kobilarcik | K. Li | Y. Li, | S. Marcocci | D. Marsden | D. Martinez Caicedo | V. Meddage | T. Mettler | K. Miller | A. Mogan | A. Navrer-Agasson | S. Pate | E. Piasetzky | I. Ponce-Pinto | D. Porzio | J. Rodriguez Rondon | M. Ross-Lonergan | G. Scanavini | E. Snider | S. Soleti | K. Sutton | S. Sword-Fehlberg | C. Thorpe | W. Van De Pontseele | G. Yarbrough | L. Yates | Z. Pavlovic | J. Evans | J. Conrad | R.A. Johnson | H.W. Yu | Rui An | R. Neely | J. St John | L. Escudero Sánchez | Y. Li | J. Jo | K. Li | C. Zhang | S. Pate

[1]  J. I. Crespo-Anadón,et al.  Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector , 2021, Physical Review Applied.

[2]  Chao Zhang,et al.  Augmented signal processing in Liquid Argon Time Projection Chambers with a deep neural network , 2020, Journal of Instrumentation.

[3]  C.Thorpe,et al.  High-performance Generic Neutrino Detection in a LArTPC near the Earth's Surface with the MicroBooNE Detector , 2020, 2012.07928.

[4]  C.Thorpe,et al.  Measurement of space charge effects in the MicroBooNE LArTPC using cosmic muons , 2020, Journal of Instrumentation.

[5]  D. Caratelli Neutrino identification with scintillation light in MicroBooNE , 2020, Journal of Instrumentation.

[6]  V. P. Luzio,et al.  Volume I. Introduction to DUNE , 2020, Journal of Instrumentation.

[7]  Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in MicroBooNE , 2020 .

[8]  O. Palamara,et al.  The Short-Baseline Neutrino Program at Fermilab , 2019, Annual Review of Nuclear and Particle Science.

[9]  MicroBooNE collaboration C. Adams,et al.  Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber , 2018, Physical Review D.

[10]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE , 2018, Journal of Instrumentation.

[11]  Chao Zhang,et al.  Three-dimensional imaging for large LArTPCs , 2018, Journal of Instrumentation.

[12]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation , 2018, Journal of Instrumentation.

[13]  C. D. Moore,et al.  The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector , 2017, The European Physical Journal C.

[14]  D. A. Wickremasinghe,et al.  Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC , 2017, 1705.07341.

[15]  D. A. Wickremasinghe,et al.  Design and Construction of the MicroBooNE Detector , 2016, 1612.05824.

[16]  D. A. Wickremasinghe,et al.  Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber , 2016, 1611.05531.

[17]  S. Gollapinni,et al.  Construction and assembly of the wire planes for the MicroBooNE Time Projection Chamber , 2016, 1609.06169.

[18]  Julia Yarba,et al.  The GENIE Neutrino Monte Carlo Generator: Physics and User Manual , 2015, 1510.05494.

[19]  B. Jones Sterile neutrinos in cold climates , 2015 .

[20]  M. A. Cortés-Giraldo,et al.  Recent developments in GEANT4 , 2015 .

[21]  B. Jones,et al.  The photomultiplier tube calibration system of the MicroBooNE experiment , 2015, 1502.04159.

[22]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[23]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[24]  C. D. Moore,et al.  Neutrino flux prediction at MiniBooNE , 2008, 0806.1449.

[25]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[26]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[27]  V. Radeka,et al.  Liquid-Argon Ionization Chambers as Total Absorption Detectors , 1991 .

[28]  C. Rubbia The Liquid Argon Time Projection Chamber: A New Concept for Neutrino Detectors , 1977 .

[29]  D. R. Nygren,et al.  The Time Projection Chamber: A New 4 pi Detector for Charged Particles , 1976 .

[30]  B. C. Barish,et al.  A Neutrino detector sensitive to rare processes. I. A Study of neutrino electron reactions , 1976 .

[31]  Veljko Radeka,et al.  Liquid-argon ionization chambers as total-absorption detectors , 1974 .

[32]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[33]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .