Incremental Non-Projective Dependency Parsing

An open issue in data-driven dependency parsing is how to handle non-projective dependencies, which seem to be required by linguistically adequate representations, but which pose problems in parsing with respect to both accuracy and efficiency. Using data from five different languages, we evaluate an incremental deterministic parser that derives non-projective dependency structures in O(n 2 ) time, supported by SVM classifiers for predicting the next parser action. The experiments show that unrestricted non-projective parsing gives a significant improvement in accuracy, compared to a strictly projective baseline, with up to 35% error reduction, leading to state-of-the-art results for the given data sets. Moreover, by restricting the class of permissible structures to limited degrees of non-projectivity, the parsing time can be reduced by up to 50% without a significant decrease in accuracy.

[1]  Sabine Buchholz,et al.  CoNLL-X Shared Task on Multilingual Dependency Parsing , 2006, CoNLL.

[2]  Joakim Nivre,et al.  Labeled Pseudo-Projective Dependency Parsing with Support Vector Machines , 2006, CoNLL.

[3]  Eckhard Bick,et al.  Floresta Sintá(c)tica: A treebank for Portuguese , 2002, LREC.

[4]  Fernando Pereira,et al.  Multilingual Dependency Analysis with a Two-Stage Discriminative Parser , 2006, CoNLL.

[5]  Richard Hudson,et al.  English word grammar , 1995 .

[6]  Michael A. Covington,et al.  A Fundamental Algorithm for Dependency Parsing , 2004 .

[7]  Gertjan van Noord,et al.  The Alpino Dependency Treebank , 2001, CLIN.

[8]  Igor Mel’čuk,et al.  Dependency Syntax: Theory and Practice , 1987 .

[9]  Keith Hall,et al.  Corrective Modeling for Non-Projective Dependency Parsing , 2005, IWPT.

[10]  Yuji Matsumoto,et al.  Statistical Dependency Analysis with Support Vector Machines , 2003, IWPT.

[11]  Fernando Pereira,et al.  Non-Projective Dependency Parsing using Spanning Tree Algorithms , 2005, HLT.

[12]  John D. Lafferty,et al.  Towards History-based Grammars: Using Richer Models for Probabilistic Parsing , 1993, ACL.

[13]  Yuji Matsumoto,et al.  Deterministic Dependency Structure Analyzer for Chinese , 2004, IJCNLP.

[14]  Joakim Nivre,et al.  Mildly Non-Projective Dependency Structures , 2006, ACL.

[15]  Peter Neuhaus,et al.  The Complexity of Recognition of Linguistically Adequate Dependency Grammars , 1997, ACL.

[16]  Sabine Brants,et al.  The TIGER Treebank , 2001 .

[17]  Saso Dzeroski,et al.  Towards a Slovene Dependency Treebank , 2006, LREC.

[18]  Joakim Nivre,et al.  Pseudo-Projective Dependency Parsing , 2005, ACL.

[19]  Joakim Nivre Constraints on Non-Projective Dependency Parsing , 2006, EACL.

[20]  Fernando Pereira,et al.  Online Learning of Approximate Dependency Parsing Algorithms , 2006, EACL.

[21]  Joakim Nivre,et al.  Memory-Based Dependency Parsing , 2004, CoNLL.

[22]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[23]  Yuji Matsumoto,et al.  Japanese Dependency Analysis using Cascaded Chunking , 2002, CoNLL.