Structural and functional relationships between photoreceptor tetraspanins and other superfamily members

[1]  Shannon M. Conley,et al.  Differences in RDS trafficking, assembly and function in cones versus rods: insights from studies of C150S-RDS. , 2010, Human molecular genetics.

[2]  L. Trusolino,et al.  The Tetraspanin CD151 Is Required for Met-dependent Signaling and Tumor Cell Growth* , 2010, The Journal of Biological Chemistry.

[3]  S. Israels,et al.  Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets. , 2010, Thrombosis research.

[4]  O. Barreiro,et al.  Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. , 2009, Trends in cell biology.

[5]  Judith Klumperman,et al.  Trafficking and function of the tetraspanin CD63. , 2009, Experimental cell research.

[6]  Shannon M. Conley,et al.  Differential requirements for retinal degeneration slow intermolecular disulfide-linked oligomerization in rods versus cones. , 2009, Human molecular genetics.

[7]  K. Palczewski,et al.  Topology of Class A G Protein-Coupled Receptors: Insights Gained from Crystal Structures of Rhodopsins, Adrenergic and Adenosine Receptors , 2009, Molecular Pharmacology.

[8]  R. DeSalle,et al.  Appearance of new tetraspanin genes during vertebrate evolution. , 2008, Genomics.

[9]  M. Naash,et al.  Outer segment oligomerization of Rds: evidence from mouse models and subcellular fractionation. , 2008, Biochemistry.

[10]  S. Finnemann,et al.  Tetraspanin CD81 is required for the αvβ5-integrin-dependent particle-binding step of RPE phagocytosis , 2007, Journal of Cell Science.

[11]  M. Caplan,et al.  Tetraspan proteins: regulators of renal structure and function , 2007, Current opinion in nephrology and hypertension.

[12]  P. Yeagle,et al.  Calcium dependent association of calmodulin with the C‐terminal domain of the tetraspanin protein peripherin/rds , 2007, Biochemistry.

[13]  R. Lapointe,et al.  Peripherin-2: an intracellular analogy to viral fusion proteins. , 2007, Biochemistry.

[14]  N. Copeland,et al.  The tetraspanin protein peripherin-2 forms a complex with melanoregulin, a putative membrane fusion regulator. , 2007, Biochemistry.

[15]  M. Naash,et al.  Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors , 2006, The Journal of cell biology.

[16]  M. Bomsel,et al.  CD9 controls the formation of clusters that contain tetraspanins and the integrin α6β1, which are involved in human and mouse gamete fusion , 2006, Journal of Cell Science.

[17]  M. Naash,et al.  The Role of Rds in Outer Segment Morphogenesis and Human Retinal Disease , 2006, Ophthalmic genetics.

[18]  A. Xu,et al.  The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. , 2005, Genomics.

[19]  M. Hemler Tetraspanin functions and associated microdomains , 2005, Nature Reviews Molecular Cell Biology.

[20]  W. DeGrado,et al.  Structural organization and interactions of transmembrane domains in tetraspanin proteins , 2005, BMC Structural Biology.

[21]  M. Naash,et al.  Role of the second intradiscal loop of peripherin/rds in homo and hetero associations. , 2005, Biochemistry.

[22]  K. Boesze-Battaglia,et al.  A Novel Tetraspanin Fusion Protein, Peripherin-2, Requires a Region Upstream of the Fusion Domain for Activity* , 2005, Journal of Biological Chemistry.

[23]  H. Drummer,et al.  Determinants of CD81 dimerization and interaction with hepatitis C virus glycoprotein E2. , 2005, Biochemical and Biophysical Research Communications - BBRC.

[24]  Wei Tang,et al.  Palmitoylation supports assembly and function of integrin–tetraspanin complexes , 2004, The Journal of cell biology.

[25]  O. L. Moritz,et al.  The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures. , 2004, Molecular biology of the cell.

[26]  T. V. Kolesnikova,et al.  Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. , 2004, The Biochemical journal.

[27]  T. V. Kolesnikova,et al.  EWI-2 regulates α3β1 integrin–dependent cell functions on laminin-5 , 2003, The Journal of cell biology.

[28]  A. Goldberg,et al.  A soluble peripherin/Rds C-terminal polypeptide promotes membrane fusion and changes conformation upon membrane association. , 2003, Experimental eye research.

[29]  M. Naash,et al.  Molecular characterization of the skate peripherin/rds gene: relationship to its orthologues and paralogues. , 2003, Investigative ophthalmology & visual science.

[30]  L. Ashman,et al.  Multiple levels of interactions within the tetraspanin web. , 2003, Biochemical and biophysical research communications.

[31]  T. V. Kolesnikova,et al.  Functional domains in tetraspanin proteins. , 2003, Trends in biochemical sciences.

[32]  J. Findlay,et al.  Topological analysis of peripherin/rds and abnormal glycosylation of the pathogenic Pro216-->Leu mutation. , 2002, The Biochemical journal.

[33]  M. Bolognesi,et al.  Subunit Association and Conformational Flexibility in the Head Subdomain of Human CD81 Large Extracellular Loop , 2002, Biological chemistry.

[34]  F. Stefano,et al.  Peripherin/rds fusogenic function correlates with subunit assembly. , 2002, Experimental eye research.

[35]  Eric Rubinstein,et al.  Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation , 2002, FEBS letters.

[36]  M. Hemler,et al.  Specific tetraspanin functions , 2001, The Journal of cell biology.

[37]  L. Molday,et al.  The cGMP-gated Channel and Related Glutamic Acid-rich Proteins Interact with Peripherin-2 at the Rim Region of Rod Photoreceptor Disc Membranes* , 2001, The Journal of Biological Chemistry.

[38]  M. Seigneuret,et al.  Structure of the Tetraspanin Main Extracellular Domain , 2001, The Journal of Biological Chemistry.

[39]  M. Hemler,et al.  Transmembrane-4 Superfamily Proteins Associate with Activated Protein Kinase C (PKC) and Link PKC to Specific β1 Integrins* , 2001, The Journal of Biological Chemistry.

[40]  K. Handa,et al.  Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. , 2000, Biochemical and biophysical research communications.

[41]  J. Findlay,et al.  Peripherin/rds Influences Membrane Vesicle Morphology , 2000, The Journal of Biological Chemistry.

[42]  Janet Rossant,et al.  Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis , 2000, Nature Genetics.

[43]  D. Bok,et al.  Transgenic Analysis of Rds/Peripherin N‐Glycosylation , 1999, Journal of neurochemistry.

[44]  A. Napoli,et al.  Fusion between retinal rod outer segment membranes and model membranes: a role for photoreceptor peripherin/rds. , 1998, Biochemistry.

[45]  Christopher J. R. Loewen,et al.  Cysteine residues of photoreceptor peripherin/rds: role in subunit assembly and autosomal dominant retinitis pigmentosa. , 1998, Biochemistry.

[46]  M. Naash,et al.  The Effect of Peripherin/rds Haploinsufficiency on Rod and Cone Photoreceptors , 1997, The Journal of Neuroscience.

[47]  B. Matsumoto,et al.  Evidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways , 1997, The Journal of comparative neurology.

[48]  D. S. Williams,et al.  Purification and light-dependent phosphorylation of a candidate fusion protein, the photoreceptor cell peripherin/rds. , 1997, Biochemistry.

[49]  P. Yeagle,et al.  Differential membrane protein phosphorylation in bovine retinal rod outer segment disk membranes as a function of disk age , 1996, Bioscience reports.

[50]  R. Molday,et al.  Subunit composition of the peripherin/rds-rom-1 disk rim complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quaternary structure. , 1996, Biochemistry.

[51]  R. Molday,et al.  Molecular cloning, membrane topology, and localization of bovine rom-1 in rod and cone photoreceptor cells. , 1996, Investigative ophthalmology & visual science.

[52]  R. Molday,et al.  Cloning of the CDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies , 1992, Neuron.

[53]  D. S. Williams,et al.  Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration , 1992, The Journal of cell biology.

[54]  H. Jansen,et al.  Development and degeneration of retina in rds mutant mice: photoreceptor abnormalities in the heterozygotes. , 1985, Experimental eye research.

[55]  H. Jansen,et al.  Absence of receptor outer segments in the retina of rds mutant mice , 1981, Neuroscience Letters.

[56]  Don H. Anderson,et al.  Disc morphogenesis in vertebrate photoreceptors , 1980, Vision Research.

[57]  Shannon M. Conley,et al.  RDS in cones does not interact with the beta subunit of the cyclic nucleotide gated channel. , 2010, Advances in experimental medicine and biology.

[58]  Albert J. Vilella,et al.  EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. , 2009, Genome research.

[59]  S. Finnemann,et al.  Tetraspanin CD81 is required for the alpha v beta5-integrin-dependent particle-binding step of RPE phagocytosis. , 2007, Journal of cell science.

[60]  K. Boesze-Battaglia,et al.  ROM-1 potentiates photoreceptor specific membrane fusion processes. , 2007, Experimental eye research.

[61]  M. Bomsel,et al.  CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. , 2006, Journal of cell science.

[62]  S. Hakomori Inaugural Article : The glycosynapse , 2002 .

[63]  A. Goldberg,et al.  Photoreceptor renewal: a role for peripherin/rds. , 2002, International review of cytology.

[64]  L. Molday,et al.  Peripherin. A rim-specific membrane protein of rod outer segment discs. , 1987, Investigative ophthalmology & visual science.