Multi-component Cahn-Hilliard system with different boundary conditions in complex domains

Abstract We propose an efficient phase-field model for multi-component Cahn–Hilliard (CH) systems in complex domains. The original multi-component Cahn–Hilliard system with a fixed phase is modified in order to make it suitable for complex domains in the Cartesian grid, along with contact angle or no mass flow boundary conditions on the complex boundaries. The proposed method uses a practically unconditionally gradient stable nonlinear splitting numerical scheme. Further, a nonlinear full approximation storage multigrid algorithm is used for solving semi-implicit formulations of the multi-component CH system, incorporated with an adaptive mesh refinement technique. The robustness of the proposed method is validated through various numerical simulations including multi-phase separations via spinodal decomposition, equilibrium contact angle problems, and multi-phase flows with a background velocity field in complex domains.

[1]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[2]  Jaemin Shin,et al.  Computer Vision and Image Understanding Three-dimensional Volume Reconstruction from Slice Data Using Phase-field Models , 2022 .

[3]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[4]  Harald Garcke,et al.  Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix , 1997 .

[5]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[6]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[7]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[8]  D. Calhoun A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions , 2002 .

[9]  Xiangrong Li,et al.  Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching , 2009, Journal of mathematical biology.

[10]  David J. Eyre,et al.  Systems of Cahn-Hilliard Equations , 1993, SIAM J. Appl. Math..

[11]  Jaemin Shin,et al.  Computers and Mathematics with Applications a Conservative Numerical Method for the Cahn–hilliard Equation with Dirichlet Boundary Conditions in Complex Domains , 2022 .

[12]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Yibao Li,et al.  Phase-field simulations of crystal growth with adaptive mesh refinement , 2012 .

[14]  Yibao Li,et al.  Adaptive mesh refinement for simulation of thin film flows , 2014 .

[15]  Jung-Il Choi,et al.  A phase-field fluid modeling and computation with interfacial profile correction term , 2016, Commun. Nonlinear Sci. Numer. Simul..

[16]  Britta Nestler,et al.  Phase-field model for solidification of a monotectic alloy with convection , 2000 .

[17]  Jaemin Shin,et al.  A conservative numerical method for the Cahn-Hilliard equation in complex domains , 2011, J. Comput. Phys..

[18]  J. López,et al.  On the reinitialization procedure in a narrow‐band locally refined level set method for interfacial flows , 2005 .

[19]  Aly A. Hamouda,et al.  Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium , 2013 .

[20]  H. S. Udaykumar,et al.  A Sharp Interface Cartesian Grid Methodfor Simulating Flows with ComplexMoving Boundaries , 2001 .

[21]  Kim An Unconditionally Gradient Stable Adaptive Mesh Refinement for the Cahn-Hilliard Equation , 2008 .

[22]  Britta Nestler,et al.  A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures , 2000 .

[23]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[24]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[25]  Héctor D. Ceniceros,et al.  A nonstiff, adaptive mesh refinement-based method for the Cahn-Hilliard equation , 2007, J. Comput. Phys..

[26]  Jeffrey J. Hoyt,et al.  The continuum theory of nucleation in multicomponent systems , 1990 .

[27]  John W. Cahn,et al.  Spinodal decomposition in ternary systems , 1971 .

[28]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[29]  Junseok Kim,et al.  A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system , 2012 .

[30]  Charles M. Elliott,et al.  `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .

[31]  Junseok Kim,et al.  Phase field computations for ternary fluid flows , 2007 .

[32]  Junseok Kim,et al.  A second-order accurate non-linear difference scheme for the N -component Cahn–Hilliard system , 2008 .

[33]  Junseok Kim,et al.  Accurate contact angle boundary conditions for the Cahn–Hilliard equations , 2011 .

[34]  Steven M. Wise,et al.  An adaptive multigrid algorithm for simulating solid tumor growth using mixture models , 2011, Math. Comput. Model..

[35]  Hang Ding,et al.  Wetting condition in diffuse interface simulations of contact line motion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[37]  Junseok Kim,et al.  A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows , 2009 .

[38]  Wei Jiang,et al.  Phase field approach for simulating solid-state dewetting problems , 2012 .

[39]  Bruce T. Murray,et al.  Approximation of Cahn–Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with C1 elements , 2008 .

[40]  Thomas Wanner,et al.  Spinodal Decomposition for Multicomponent Cahn–Hilliard Systems , 2000 .

[41]  Thomas Young,et al.  An Essay on the Cohesion of Fluids , 1800 .

[42]  Jung Il Choi,et al.  An immersed boundary method for complex incompressible flows , 2007, J. Comput. Phys..