Diffusion magnetic resonance imaging-based surrogate marker in amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is the most prevalent type of motor neuron disease (MND) and is diagnosed with a delay from the first appearance of symptoms. Surrogate markers that may be used to detect pathological changes before a significant neuronal loss occurs and allow for early intervention with disease-modifying therapy techniques are desperately needed. Using water molecules that diffuse within the tissue and experience displacement on the micron scale, diffusion magnetic resonance imaging (MRI) is a promising technique that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, axonal density, order, and myelination. Diffusion tensor imaging (DTI) is the primary diffusion MRI technique used to evaluate the pathogenesis of ALS. Neurite orientation dispersion and density imaging (NODDI), diffusion kurtosis imaging (DKI), and free water elimination DTI (FWE-DTI) are only a few of the approaches that have been developed to overcome the shortcomings of the diffusion tensor technique. This article provides a summary of these methods and their potential as surrogate markers for detecting the onset of ALS at an early stage.

[1]  A. Fotouhi,et al.  Metal concentrations in cerebrospinal fluid, blood, serum, plasma, hair, and nails in amyotrophic lateral sclerosis: A systematic review and meta-analysis , 2023, Journal of the Neurological Sciences.

[2]  S. Castro-Gomez,et al.  Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis , 2023, Cells.

[3]  L. Lisowski,et al.  Molecular mechanisms of amyotrophic lateral sclerosis as broad therapeutic targets for gene therapy applications utilizing adeno‐associated viral vectors , 2023, Medicinal research reviews.

[4]  C. Raoul,et al.  Early-onset, conjugal, twin-discordant, and clusters of sporadic ALS: Pathway to discovery of etiology via lifetime exposome research , 2023, Frontiers in Neuroscience.

[5]  J. Kassubek,et al.  Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development , 2023, International journal of molecular sciences.

[6]  M. Gołębiowski,et al.  Role of DTI-MRI parameters in diagnosis of ALS: useful biomarkers for daily practice? Tertiary centre experience and literature review. , 2022, Neurologia i neurochirurgia polska.

[7]  S. Haider,et al.  Amyotrophic Lateral Sclerosis Risk Genes and Suppressor. , 2022, Current gene therapy.

[8]  P. Vourc'h,et al.  Treatment of hereditary amyotrophic lateral sclerosis. , 2022, Revue neurologique.

[9]  D. Glavač,et al.  The Potential Connection between Molecular Changes and Biomarkers Related to ALS and the Development and Regeneration of CNS , 2022, International journal of molecular sciences.

[10]  A. Chiò,et al.  Systematic evaluation of genetic mutations in ALS: a population-based study , 2022, Journal of Neurology, Neurosurgery, and Psychiatry.

[11]  J. Ranjeva,et al.  Alterations of Microstructure and Sodium Homeostasis in Fast Amyotrophic Lateral Sclerosis Progressors: A Brain DTI and Sodium MRI Study , 2022, American Journal of Neuroradiology.

[12]  H. Shang,et al.  Genetic factors for survival in amyotrophic lateral sclerosis: an integrated approach combining a systematic review, pairwise and network meta-analysis , 2022, BMC Medicine.

[13]  R. Halden,et al.  Systematic and state-of the science review of the role of environmental factors in Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig's Disease. , 2021, The Science of the total environment.

[14]  P. Pradat,et al.  Biomarkers for C9orf7-ALS in Symptomatic and Pre-symptomatic Patients: State-of-the-art in the New Era of Clinical Trials , 2021, Journal of neuromuscular diseases.

[15]  M. Jaggi,et al.  The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. , 2021, Life sciences.

[16]  P. Spencer Parkinsonism and motor neuron disorders: Lessons from Western Pacific ALS/PDC , 2021, Journal of the Neurological Sciences.

[17]  D. Lulé,et al.  Segmental involvement of the corpus callosum in C9orf72-associated ALS: a tract of interest-based DTI study , 2021, Therapeutic advances in chronic disease.

[18]  C. Pantelis,et al.  Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases , 2021, Frontiers in Neuroscience.

[19]  J. Kassubek,et al.  Feature selection from magnetic resonance imaging data in ALS: a systematic review , 2021, Therapeutic advances in chronic disease.

[20]  D. Topgaard,et al.  Toward nonparametric diffusion‐T1 characterization of crossing fibers in the human brain , 2020, Magnetic resonance in medicine.

[21]  S. Aoki,et al.  Brain White-Matter Degeneration Due to Aging and Parkinson Disease as Revealed by Double Diffusion Encoding , 2020, Frontiers in Neuroscience.

[22]  N. Gong,et al.  Imaging microstructure with diffusion and susceptibility MR: neuronal density correlation in Disrupted-in-Schizophrenia-1 mutant mice. , 2020, NMR in biomedicine.

[23]  C. Beaulieu,et al.  A prospective harmonized multicenter DTI study of cerebral white matter degeneration in ALS , 2020, Neurology.

[24]  D. Lulé,et al.  In vivo histopathological staging in C9orf72-associated ALS: A tract of interest DTI study , 2020, NeuroImage: Clinical.

[25]  Hua-jun Chen,et al.  Identification of Amyotrophic Lateral Sclerosis Based on Diffusion Tensor Imaging and Support Vector Machine , 2020, Frontiers in Neurology.

[26]  Hua-jun Chen,et al.  Abnormal cerebral microstructures revealed by diffusion kurtosis imaging in amyotrophic lateral sclerosis , 2020, Journal of magnetic resonance imaging : JMRI.

[27]  S. Aoki,et al.  Scan–rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics , 2019, Neuroradiology.

[28]  S. Aoki,et al.  MR Biomarkers of Degenerative Brain Disorders Derived From Diffusion Imaging , 2019, Journal of magnetic resonance imaging : JMRI.

[29]  J. Kassubek,et al.  The same cortico-efferent tract involvement in progressive bulbar palsy and in ‘classical’ ALS: A tract of interest-based MRI study , 2019, NeuroImage: Clinical.

[30]  S. Aoki,et al.  Free-Water Imaging in White and Gray Matter in Parkinson’s Disease , 2019, Cells.

[31]  S. Grieve,et al.  Diffusion kurtosis and quantitative susceptibility mapping MRI are sensitive to structural abnormalities in amyotrophic lateral sclerosis , 2019, NeuroImage: Clinical.

[32]  E. Pioro,et al.  Unbiased MRI Analyses Identify Micropathologic Differences Between Upper Motor Neuron-Predominant ALS Phenotypes , 2019, Front. Neurosci..

[33]  Jelle Veraart,et al.  Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms , 2019, NeuroImage.

[34]  S. Aoki,et al.  White matter alterations in adult with autism spectrum disorder evaluated using diffusion kurtosis imaging , 2019, Neuroradiology.

[35]  S. Black,et al.  Speech network regional involvement in bulbar ALS: a multimodal structural MRI study , 2019, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[36]  Hui Zhang,et al.  Optimizing the intrinsic parallel diffusivity in NODDI: An extensive empirical evaluation , 2019, bioRxiv.

[37]  Hui Zhang,et al.  Imaging brain microstructure with diffusion MRI: practicality and applications , 2019, NMR in biomedicine.

[38]  David J. Schwartzman,et al.  Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS , 2018, Journal of Neurology, Neurosurgery, and Psychiatry.

[39]  Nicole R. Zürcher,et al.  Integrated imaging of [11C]-PBR28 PET, MR diffusion and magnetic resonance spectroscopy 1H-MRS in amyotrophic lateral sclerosis , 2018, NeuroImage: Clinical.

[40]  Weijun Tang,et al.  Radial diffusivity as an imaging biomarker for early diagnosis of non-demented amyotrophic lateral sclerosis , 2018, European Radiology.

[41]  N. Szabó,et al.  Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders , 2018, Brain Research Bulletin.

[42]  Q. Gong,et al.  Altered white matter microarchitecture in amyotrophic lateral sclerosis: A voxel-based meta-analysis of diffusion tensor imaging , 2018, NeuroImage: Clinical.

[43]  B. Dubois,et al.  Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years , 2018, JAMA neurology.

[44]  R. Magin,et al.  Diffusion tensor imaging identifies presymptomatic axonal degeneration in the spinal cord of ALS mice , 2018, Brain Research.

[45]  Bennett A. Landman,et al.  Histological validation of diffusion MRI fiber orientation distributions and dispersion , 2018, NeuroImage.

[46]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis , 2017, The Lancet.

[47]  Matthew D. Budde,et al.  Design and Validation of Diffusion MRI Models of White Matter , 2017, Front. Phys..

[48]  S. Aoki,et al.  Gray Matter Abnormalities in Idiopathic Parkinson's Disease: Evaluation by Diffusional Kurtosis Imaging and Neurite Orientation Dispersion and Density Imaging , 2017, Human brain mapping.

[49]  Daniel R. Scoles,et al.  Antisense oligonucleotide therapy for spinocerebellar ataxia type 2 , 2017, Nature.

[50]  M. Tu,et al.  Effectiveness of diffusion tensor imaging in differentiating early-stage subcortical ischemic vascular disease, Alzheimer’s disease and normal ageing , 2017, PloS one.

[51]  S. Aoki,et al.  Understanding microstructure of the brain by comparison of neurite orientation dispersion and density imaging (NODDI) with transparent mouse brain , 2017, Acta radiologica open.

[52]  T. Jiang,et al.  Altered microstructure rather than morphology in the corpus callosum after lower limb amputation , 2017, Scientific Reports.

[53]  Markus Nilsson,et al.  Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding , 2017, NeuroImage.

[54]  Peter Savadjiev,et al.  Characterizing white matter changes in chronic schizophrenia: A free-water imaging multi-site study , 2017, Schizophrenia Research.

[55]  Ofer Pasternak,et al.  Greater Extracellular Free Water in First-Episode Psychosis Predicts Better Neurocognitive Functioning , 2017, Molecular Psychiatry.

[56]  A. W. Chung,et al.  NODDI reproducibility and variability with magnetic field strength: A comparison between 1.5 T and 3 T , 2016, Human Brain Mapping.

[57]  Emily C. Collins,et al.  Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease , 2016, NeuroImage.

[58]  M. Shenton,et al.  Applying a free-water correction to diffusion imaging data uncovers stress-related neural pathology in depression , 2015, NeuroImage: Clinical.

[59]  Jeremy F. P. Ullmann,et al.  Brain tissue compartment density estimated using diffusion‐weighted MRI yields tissue parameters consistent with histology , 2015, Human brain mapping.

[60]  Derek K. Jones,et al.  Resolving relaxometry and diffusion properties within the same voxel in the presence of crossing fibres by combining inversion recovery and diffusion‐weighted acquisitions , 2015, Magnetic resonance in medicine.

[61]  Masaaki Hori,et al.  Intersite Reliability of Diffusion Tensor Imaging on Two 3T Scanners. , 2015, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[62]  Nick C Fox,et al.  Longitudinal Diffusion Tensor Imaging in Frontotemporal Dementia , 2014, Annals of neurology.

[63]  O. Abe,et al.  A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging , 2014, Neuroradiology.

[64]  M. Hulkower,et al.  A Decade of DTI in Traumatic Brain Injury: 10 Years and 100 Articles Later , 2013, American Journal of Neuroradiology.

[65]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[66]  Alexander Leemans,et al.  Variability in diffusion kurtosis imaging: Impact on study design, statistical power and interpretation , 2013, NeuroImage.

[67]  M. Otaduy,et al.  Segmented corpus callosum diffusivity correlates with the Expanded Disability Status Scale score in the early stages of relapsing-remitting multiple sclerosis , 2013, Clinics.

[68]  O. Abe,et al.  Relationship between cognitive impairment and white-matter alteration in Parkinson’s disease with dementia: tract-based spatial statistics and tract-specific analysis , 2013, European Radiology.

[69]  Carl-Fredrik Westin,et al.  Excessive Extracellular Volume Reveals a Neurodegenerative Pattern in Schizophrenia Onset , 2012, The Journal of Neuroscience.

[70]  Rui Huang,et al.  A meta-analysis of diffusion tensor imaging studies in amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[71]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[72]  Jacques-Donald Tournier,et al.  Diffusion tensor imaging and beyond , 2011, Magnetic resonance in medicine.

[73]  Xing Qiu,et al.  Quantification of accuracy and precision of multi-center DTI measurements: A diffusion phantom and human brain study , 2011, NeuroImage.

[74]  J. D. Mitchell,et al.  Timelines in the diagnostic evaluation of people with suspected amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND) – a 20-year review: Can we do better? , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[75]  Hans-Jochen Heinze,et al.  Experience-dependent plasticity of white-matter microstructure extends into old age , 2010, Neuropsychologia.

[76]  M. Swash,et al.  Lockhart Clarke's contribution to the description of amyotrophic lateral sclerosis. , 2010, Brain : a journal of neurology.

[77]  J. Helpern,et al.  MRI quantification of non‐Gaussian water diffusion by kurtosis analysis , 2010, NMR in biomedicine.

[78]  M. Turner,et al.  The diagnostic pathway and prognosis in bulbar-onset amyotrophic lateral sclerosis , 2010, Journal of the Neurological Sciences.

[79]  B. Pollock,et al.  Diffusion tensor tractography findings in schizophrenia across the adult lifespan. , 2010, Brain : a journal of neurology.

[80]  J. Yeatman,et al.  Diffusion Tensor Imaging: A Review for Pediatric Researchers and Clinicians , 2010, Journal of developmental and behavioral pediatrics : JDBP.

[81]  M. Filippi,et al.  EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases , 2010, European journal of neurology.

[82]  N. Intrator,et al.  Free water elimination and mapping from diffusion MRI , 2009, Magnetic resonance in medicine.

[83]  C. Wheeler-Kingshott,et al.  About “axial” and “radial” diffusivities , 2009, Magnetic resonance in medicine.

[84]  E. Beghi,et al.  Prognostic factors in ALS: A critical review , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[85]  Hae-Jeong Park,et al.  Measuring fractional anisotropy of the corpus callosum using diffusion tensor imaging: mid-sagittal versus axial imaging planes. , 2008, Korean journal of radiology.

[86]  P. Fillard,et al.  Diffusion Tensor Imaging Characteristics of the Corpus Callosum in Mild, Moderate, and Severe Traumatic Brain Injury , 2008, American Journal of Neuroradiology.

[87]  M. Jan The hypotonic infant: Clinical approach , 2007, Journal of Pediatric Neurology.

[88]  A. Alexander,et al.  Diffusion tensor imaging of the brain , 2007, Neurotherapeutics.

[89]  J. Ravits,et al.  Focality of upper and lower motor neuron degeneration at the clinical onset of ALS , 2007, Neurology.

[90]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[91]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis in an urban setting , 2006, Journal of Neurology.

[92]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[93]  Talma Hendler,et al.  Characterization of displaced white matter by brain tumors using combined DTI and fMRI , 2006, NeuroImage.

[94]  J. Helpern,et al.  Three‐dimensional characterization of non‐gaussian water diffusion in humans using diffusion kurtosis imaging , 2006, NMR in biomedicine.

[95]  H. Mitsumoto,et al.  The natural history of primary lateral sclerosis , 2006, Neurology.

[96]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[97]  Jungsu S. Oh,et al.  Fractional anisotropy-based divisions of midsagittal corpus callosum , 2005, Neuroreport.

[98]  M. C. Papadopoulos,et al.  Molecular mechanisms of brain tumor edema , 2004, Neuroscience.

[99]  K. Kiening,et al.  Edema and brain trauma , 2004, Neuroscience.

[100]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[101]  G. Forster,et al.  Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS , 2003, Neurology.

[102]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[103]  I. Wilkinson,et al.  Study of the effect of CSF suppression on white matter diffusion anisotropy mapping of healthy human brain , 2002, Magnetic resonance in medicine.

[104]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[105]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[106]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[107]  A. Snyder,et al.  Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. , 1999, Radiology.

[108]  L R Schad,et al.  Comparison of diffusion anisotropy measurements in combination with the flair-technique. , 1999, Magnetic resonance imaging.

[109]  P A Narayana,et al.  Selective measurement of white matter and gray matter diffusion trace values in normal human brain. , 1998, Medical physics.

[110]  P A Narayana,et al.  Cerebrospinal fluid‐suppressed high‐resolution diffusion imaging of human brain , 1997, Magnetic resonance in medicine.

[111]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[112]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[113]  G. Wohlfart Collateral regeneration in partially denervated muscles , 1958, Neurology.

[114]  E. Melhem,et al.  Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. , 2014, AJR. American journal of roentgenology.

[115]  P. Nithiarasu,et al.  A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics , 2018, Journal of The Royal Society Interface.

[116]  Y. Assaf,et al.  Diffusion Tensor Imaging (DTI)-based White Matter Mapping in Brain Research: A Review , 2007, Journal of Molecular Neuroscience.

[117]  D. Rottenberg,et al.  A statistical method for determining the proportions of gray matter, white matter, and CSF using computed tomography , 2004, Neuroradiology.

[118]  P. Parizel,et al.  Imaging findings in diffuse axonal injury after closed head trauma , 1998, European Radiology.