Quantification of Uncertainties in Turbulence Modeling: A Comparison of Physics-Based and Random Matrix Theoretic Approaches
暂无分享,去创建一个
Heng Xiao | Rui Sun | Jian-Xun Wang | Heng Xiao | Jian-Xun Wang | Rui Sun
[1] Pierre Sagaut,et al. Epistemic uncertainties in RANS model free coefficients , 2014 .
[2] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[3] Qiqi Wang,et al. Quantification of structural uncertainties in the k − ω turbulence model , 2010 .
[4] Gianluca Iaccarino,et al. Modeling Structural Uncertainties in Reynolds-Averaged Computations of Shock/Boundary Layer Interactions , 2011 .
[5] Tiangang Cui,et al. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction , 2015, J. Comput. Phys..
[6] P. Cinnella,et al. Predictive RANS simulations via Bayesian Model-Scenario Averaging , 2014, J. Comput. Phys..
[7] K. S. Ball,et al. Dynamical eigenfunction decomposition of turbulent channel flow , 1991, physics/0608257.
[8] Hester Bijl,et al. Bayesian estimates of parameter variability in the k-ε turbulence model , 2014, J. Comput. Phys..
[9] F. Durst,et al. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches , 2007 .
[10] Heng Xiao,et al. Incorporating Prior Knowledge for Quantifying and Reducing Model-Form Uncertainty in RANS Simulations , 2015 .
[11] Silviu Guiasu,et al. The principle of maximum entropy , 1985 .
[12] Solomon Kullback,et al. Information Theory and Statistics , 1970, The Mathematical Gazette.
[13] J. W. Humberston. Classical mechanics , 1980, Nature.
[14] Anil K. Bera,et al. Maximum entropy autoregressive conditional heteroskedasticity model , 2009 .
[15] Christian Soize. A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .
[16] S. Kullback,et al. Information Theory and Statistics , 1959 .
[17] Gianluca Iaccarino,et al. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures , 2013 .
[18] J.-L. Wu,et al. A Bayesian Calibration–Prediction Method for Reducing Model-Form Uncertainties with Application in RANS Simulations , 2015, 1510.06040.
[19] Roger G. Ghanem,et al. A Bounded Random Matrix Approach for Stochastic Upscaling , 2009, Multiscale Model. Simul..
[20] Todd A. Oliver,et al. UNCERTAINTY QUANTIFICATION FOR RANS TURBULENCE MODEL PREDICTIONS , 2009 .
[21] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[22] Andrew M. Stuart,et al. Evaluating Data Assimilation Algorithms , 2011, ArXiv.
[23] Gianluca Iaccarino,et al. A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations , 2013 .
[24] Michael Manhart,et al. Flow over periodic hills – Numerical and experimental study in a wide range of Reynolds numbers , 2009 .
[25] C. J. Roy,et al. Quantifying Model-Form Uncertainties in Reynolds Averaged Navier-Stokes Equations: An Open-Box, Physics-Based, Bayesian Approach , 2015 .
[26] R. Ghanem,et al. Polynomial chaos decomposition for the simulation of non-gaussian nonstationary stochastic processes , 2002 .
[27] Heng Xiao,et al. A random matrix approach for quantifying model-form uncertainties in turbulence modeling , 2016, 1603.09656.
[28] Ben Calderhead,et al. A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.
[29] H. C. Corben,et al. Classical Mechanics (2nd ed.) , 1961 .