Updated definition of glass-ceramics

Abstract Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”.

[1]  Aldo R Boccaccini,et al.  45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. , 2006, Biomaterials.

[2]  S. Krüger,et al.  The TTT Curves of the Heterogeneous and Homogeneous Crystallization of Lithium Disilicate – A Stochastic Approach to Crystal Nucleation , 2016, Front. Mater..

[3]  H. G. Kim,et al.  Patterning of Non‐Linear Optical Crystals in Glass by Laser‐Induced Crystallization , 2007 .

[4]  A. Burin,et al.  Glassy Materials and Disordered Solids , 2006 .

[5]  A. Sakamoto,et al.  β-Spodumene Glass-Ceramic with Anomalous Low Thermal Expansion , 2008 .

[6]  S. Krüger,et al.  Thermal analysis of repetitive single crystallization events in glass-forming liquids at low undercooling , 2017, Journal of Non-Crystalline Solids.

[7]  M. Weinberg Transformation kinetics of particles with surface and bulk nucleation , 1992 .

[8]  Maria J. Pascual,et al.  Crystallization Kinetics of LaF3 Nanocrystals in an Oxyfluoride Glass , 2011 .

[9]  Edgar Dutra Zanotto,et al.  Surface and volume nucleation and growth in TiO2–cordierite glasses , 1999 .

[10]  M. Pascual,et al.  Mechanical properties of solid oxide fuel cell glass-ceramic sealants in the system BaO/SrO-MgO-B2O3-SiO2 , 2017 .

[11]  Edgar Dutra Zanotto,et al.  Stress induced pore formation and phase selection in a crystallizing stretched glass , 2010 .

[12]  S. D. Stookey History of the Development of Pyroceram , 1958 .

[13]  Edgar Dutra Zanotto,et al.  Critical assessment of DTA-DSC methods for the study of nucleation kinetics in glasses , 2010 .

[14]  T. Heil,et al.  Experimental evidence of self-limited growth of nanocrystals in glass. , 2009, Nano letters.

[15]  Edgar Dutra Zanotto,et al.  Experimental test of the general theory of transformation kinetics: Homogeneous nucleation in a Na2O·2CaO·3SiO2 glass , 1988 .

[16]  U. Reisgen,et al.  Joining properties of a composite glass-ceramic sealant , 2006 .

[17]  S. Habelitz,et al.  Mechanical properties of oriented mica glass ceramic , 1997 .

[18]  M. Allix,et al.  Long-lasting luminescent ZnGa 2 O 4 :Cr 3+ transparent glass-ceramics† , 2014 .

[19]  C. Patzig,et al.  Temporal Evolution of Crystallization in MgO–Al2O3–SiO2–ZrO2 Glass Ceramics , 2012 .

[20]  Adalbert Feltz,et al.  Amorphous Inorganic Materials and Glasses , 1993 .

[21]  Chao Liu,et al.  Lead Chalcogenide Quantum Dot-Doped Glasses for Photonic Devices , 2013 .

[22]  G. Tendeloo,et al.  Enhancement of second harmonic generation signal in thermally poled glass ceramic with NaNbO3 nanocrystals , 2006 .

[23]  S. D. Stookey Recent Developments in Radiation-Sensitive Glasses , 1954 .

[24]  I. Avramov,et al.  Direct Evidence of Al-Rich Layers around Nanosized ZrTiO4 in Glass: Putting the Role of Nucleation Agents in Perspective , 2010 .

[25]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[26]  L. E. Cross,et al.  Grain‐Oriented Glass‐Ceramics for Piezoelectric Devices , 1984 .

[27]  R. Müller,et al.  Viscous‐Phase Silicate Processing , 2012 .

[28]  J. Deubener,et al.  Sintering of glass matrix composites with small rigid inclusions , 2009 .

[29]  Edgar Dutra Zanotto,et al.  Heating rate effects in time-dependent homogeneous nucleation in glasses , 2017 .

[30]  George H. Beall,et al.  Glass Ceramic Technology , 2002 .

[31]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[32]  M. Suchomel,et al.  Highly Transparent BaAl4O7 Polycrystalline Ceramic Obtained by Full Crystallization from Glass , 2012, Advanced materials.

[33]  J. Spence,et al.  Precipitation of nanocrystals in glasses by electron irradiation: An alternative path to form glass ceramics? , 2007 .

[34]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[35]  T. Komatsu,et al.  Nucleation and Crystal Growth in Laser-Patterned Lines in Glasses , 2016, Front. Mater..

[36]  W. Höland,et al.  Controlled Parallel Crystallization of Lithium Disilicate and Diopside Using a Combination of Internal and Surface Nucleation , 2016, Front. Mater..

[37]  D. W. Henderson,et al.  Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids , 1979 .

[38]  D. Uhlmann A kinetic treatment of glass formation , 1972 .

[39]  R. Pascova,et al.  The kinetics of surface induced sinter crystallization and the formation of glass-ceramic materials , 1998 .

[40]  Edgar Dutra Zanotto,et al.  Non-stoichiometric crystallization of lithium metasilicate–calcium metasilicate glasses. Part 2 — Effect of the residual liquid , 2013 .

[41]  Ralf Müller,et al.  Surface crystallization of silicate glasses: nucleation sites and kinetics , 2000 .

[42]  S. Krüger,et al.  Stochastic nature of the liquid-to-crystal heterogeneous nucleation of supercooled lithium disilicate liquid , 2014 .

[43]  C. Rüssel,et al.  Electrochemical nucleation for the preparation of oriented glass ceramics , 1997 .

[44]  J. Suwanprateeb,et al.  Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing , 2009, Journal of materials science. Materials in medicine.

[45]  D. Birnie,et al.  Crystallization kinetics and the JMAK equation , 1997 .

[46]  K. Miura,et al.  Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence. , 2010, Journal of the American Chemical Society.

[47]  S. D. Stookey Catalyzed Crystallization of Glass in Theory and Practice , 1959 .

[48]  R. Müller Surface nucleation in cordierite glass , 1997 .

[49]  M. Suchomel,et al.  Transparency through Structural Disorder: A New Concept for Innovative Transparent Ceramics , 2015 .

[50]  Jürn W. P. Schmelzer,et al.  The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization , 2013 .

[51]  H. Scholze,et al.  Glas : Natur, Struktur und Eigenschaften , 1979 .

[52]  M. Allix,et al.  Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass‐Ceramics , 2014 .

[53]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[54]  C. Rüssel Oriented crystallization of glass. A review , 1997 .

[55]  Edgar Dutra Zanotto,et al.  Glass-ceramics and realization of the unobtainable: Property combinations that push the envelope , 2017 .

[56]  Edgar Dutra Zanotto,et al.  A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass , 2017 .

[57]  R. Nesper,et al.  Formation and crystal growth of needle-like fluoroapatite in functional glass-ceramics , 2008 .