The Single Server Queue with Catastrophes and Geometric Reneging

[1]  Antonis Economou,et al.  The single server vacation queueing model with geometric abandonments , 2011 .

[2]  A. G. Nobile,et al.  A Double-ended Queue with Catastrophes and Repairs, and a Jump-diffusion Approximation , 2011, 1101.5073.

[3]  Antonis Economou,et al.  Synchronized abandonments in a single server unreliable queue , 2010, Eur. J. Oper. Res..

[4]  Antonis Economou,et al.  Synchronized reneging in queueing systems with vacations , 2009, Queueing Syst. Theory Appl..

[5]  Antonis Economou,et al.  Alternative Approaches for the Transient Analysis of Markov Chains with Catastrophes , 2008 .

[6]  Uri Yechiali,et al.  Queues with system disasters and impatient customers when system is down , 2007, Queueing Syst. Theory Appl..

[7]  J R Artalejo,et al.  Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes. , 2007, Mathematical biosciences and engineering : MBE.

[8]  A. Krishnamoorthy,et al.  Transient analysis of a single server queue with catastrophes, failures and repairs , 2007, Queueing Syst. Theory Appl..

[9]  Antonis Economou,et al.  The Batch Markovian Arrival Process Subject to Renewal Generated Geometric Catastrophes , 2007 .

[10]  Joseph Gani,et al.  Death and Birth-Death and Immigration Processes with Catastrophes , 2007 .

[11]  Gerardo Rubino,et al.  Dual processes to solve single server systems , 2005 .

[12]  Jesus R. Artalejo,et al.  Analysis of a Multiserver Queue with Setup Times , 2005, Queueing Syst. Theory Appl..

[13]  Antonis Economou,et al.  A continuous-time Markov chain under the influence of a regulating point process and applications in stochastic models with catastrophes , 2003, Eur. J. Oper. Res..

[14]  Virginia Giorno,et al.  On the M/M/1 Queue with Catastrophes and Its Continuous Approximation , 2003, Queueing Syst. Theory Appl..

[15]  B. Krishna Kumar,et al.  Transient solution of an M/M/1 queue with catastrophes , 2000 .

[16]  C. Lee,et al.  The density of the extinction probability of a time homogeneous linear birth and death process under the influence of randomly occurring disasters. , 2000, Mathematical biosciences.

[17]  H. Tuckwell,et al.  Population growth with randomly distributed jumps , 1997 .

[18]  Ward Whitt,et al.  Numerical Inversion of Laplace Transforms of Probability Distributions , 1995, INFORMS J. Comput..

[19]  E. G. Kyriakidis Stationary probabilities for a simple immigration-birth-death process under the influence of total catastrophes , 1994 .

[20]  M. Neuts An interesting random walk on the non-negative integers , 1994, Journal of Applied Probability.

[21]  Robert Bartoszyński,et al.  Population processes under the influence of disasters occurring independently of population size , 1989 .

[22]  P. Brockwell The extinction time of a general birth and death process with catastrophes , 1986, Journal of Applied Probability.

[23]  J. Gani,et al.  Birth, immigration and catastrophe processes , 1982, Advances in Applied Probability.

[24]  Avishai Mandelbaum,et al.  Service Engineering in Action: The Palm/Erlang-A Queue, with Applications to Call Centers , 2007 .

[25]  Daniel A. Marcus,et al.  DUAL PROCESSES TO SOLVE SINGLE SERVER SYSTEMS August 2004 , 2005 .

[26]  Sidney L. Hantler,et al.  Use of Characteristic Roots for Solving Infinite State Markov Chains , 2000 .

[27]  R. Serfozo EXTREME VALUES OF BIRTH AND DEATH PROCESSES AND QUEUES , 1987 .