Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.

Pyrolysis characteristics and kinetic of five lignocellulosic biomass pine wood sawdust, fern (Dicranopteris linearis) stem, wheat stalk, sugarcane bagasse and jute (Corchorus capsularis) stick were investigated using thermogravimetric analysis. The pyrolysis of five lignocellulosic biomass could be divided into three stages, which correspond to the pyrolysis of hemicellulose, cellulose and lignin, respectively. Single Gaussian activation energy distributions of each stage are 148.50-201.13 kJ/mol with standard deviations of 2.60-13.37 kJ/mol. The kinetic parameters of different stages were used as initial guess values for three-parallel-DAEM model calculation with good fitting quality and fast convergence rate. The mean activation energy ranges of hemicellulose, cellulose and lignin were 148.12-164.56 kJ/mol, 171.04-179.54 kJ/mol and 175.71-201.60 kJ/mol, with standard deviations of 3.91-9.89, 0.29-1.34 and 23.22-27.24 kJ/mol, respectively. The mass fractions of hemicellulose, cellulose and lignin in lignocellulosic biomass were respectively estimated as 0.12-0.22, 0.54-0.65 and 0.17-0.29.

[1]  Ronghou Liu,et al.  Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis. , 2013, Bioresource technology.

[2]  Jin-hu Wu,et al.  A novel Gaussian-DAEM-reaction model for the pyrolysis of cellulose, hemicellulose and lignin , 2014 .

[3]  Alan K. Burnham,et al.  ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data , 2011 .

[4]  Honggang Chen,et al.  Thermogravimetric Study of Biomass Pyrolysis Kinetics. A Distributed Activation Energy Model with Prediction Tests , 2011 .

[5]  Mingxiong He,et al.  A biorefining process: Sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse. , 2015, Bioresource technology.

[6]  C. Hui,et al.  Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends , 2014 .

[7]  Junmeng Cai,et al.  An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass , 2014 .

[8]  J. Villaseñor,et al.  Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. , 2012, Bioresource technology.

[9]  S. Channiwala,et al.  A UNIFIED CORRELATION FOR ESTIMATING HHV OF SOLID, LIQUID AND GASEOUS FUELS , 2002 .

[10]  Guang-bo Zhao,et al.  Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models. , 2008, Bioresource technology.

[11]  J. Opfermann,et al.  Kinetic Analysis Using Multivariate Non-linear Regression. I. Basic concepts , 2000 .

[12]  Chaosheng Zhang,et al.  A review of fractionations of rare earth elements in plants , 2008 .

[13]  R. T. Yang,et al.  Rational approximations of the integral of the Arrhenius function , 1977 .

[14]  M. Ahmaruzzaman,et al.  Proximate analyses and predicting HHV of chars obtained from cocracking of petroleum vacuum residue with coal, plastics and biomass. , 2008, Bioresource technology.

[15]  G. Várhegyi,et al.  Thermal Decomposition of Wheat, Oat, Barley, and Brassica carinata Straws : A Kinetic Study , 2009 .

[16]  Peter McKendry,et al.  Energy production from biomass (Part 1): Overview of biomass. , 2002, Bioresource technology.

[17]  C. Blasi,et al.  Thermogravimetric Analysis and Devolatilization Kinetics of Wood , 2002 .

[18]  Chao Gai,et al.  The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. , 2013, Bioresource technology.

[19]  J. S. Dennis,et al.  An algorithm for determining the kinetics of devolatilisation of complex solid fuels from thermogravimetric experiments , 2006 .

[20]  G. Huber,et al.  A distributed activation energy model for the pyrolysis of lignocellulosic biomass , 2013 .

[21]  Tiejun Wang,et al.  A review of thermal-chemical conversion of lignocellulosic biomass in China. , 2012, Biotechnology advances.

[22]  H. Spliethoff,et al.  TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors , 2007 .

[23]  L. Puigjaner,et al.  Further applications of a revisited summative model for kinetics of biomass pyrolysis , 2004 .

[24]  A. Bridgwater,et al.  An overview of fast pyrolysis of biomass , 1999 .

[25]  Baosheng Jin,et al.  Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. , 2011, Bioresource technology.

[26]  Jie Wang,et al.  A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components. , 2014, Bioresource technology.

[27]  S. Ceylan,et al.  Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. , 2014, Bioresource technology.

[28]  A. Anca-Couce,et al.  How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme , 2014 .

[29]  Colomba Di Blasi,et al.  Modeling chemical and physical processes of wood and biomass pyrolysis , 2008 .

[30]  Qinglin Wu,et al.  Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis , 2008 .

[31]  Cyril Aymonier,et al.  Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. , 2011 .

[32]  J. Pérez,et al.  Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview , 2002, International microbiology : the official journal of the Spanish Society for Microbiology.

[33]  A. Zabaniotou,et al.  Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). , 2011, Bioresource technology.