A Relationship Between Linear Complexity and-Error Linear Complexity

The -error linear complexity of a periodic sequence of period is defined as the smallest linear complexity that can be obtained by changing or fewer bits of the sequence per period. This correspondence shows a relationship between the linear complexity and the minimum value for which the -error linear complexity is strictly less than the linear complexity.

[1]  R. A. Rueppel Analysis and Design of Stream Ciphers , 2012 .

[2]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1974 .

[3]  Rajesh Sundaresan,et al.  Robust decoding for timing channels , 2000, IEEE Trans. Inf. Theory.

[4]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  Cunsheng Ding,et al.  The Stability Theory of Stream Ciphers , 1991, Lecture Notes in Computer Science.

[7]  Erdal Arikan Sequential decoding for multiple access channels , 1988, IEEE Trans. Inf. Theory.

[8]  Sergio Verdú,et al.  Generating random bits from an arbitrary source: fundamental limits , 1995, IEEE Trans. Inf. Theory.

[9]  Richard M. Karp,et al.  Minimum-redundancy coding for the discrete noiseless channel , 1961, IRE Trans. Inf. Theory.

[10]  Shunsuke Ihara,et al.  Information theory - for continuous systems , 1993 .

[11]  Paolo Ferragina,et al.  Text Compression , 2009, Encyclopedia of Database Systems.

[12]  Te Sun Han Theorems on the variable-length intrinsic randomness , 2000, IEEE Trans. Inf. Theory.

[13]  L. Györfi,et al.  Nonparametric entropy estimation. An overview , 1997 .

[14]  Takashi Amemiya,et al.  A New Class of the Universal Representation for the Positive Integers , 1993 .

[15]  Lawrence D. Brown Fundamentals of Statistical Exponential Families , 1987 .

[16]  F. Jelinek Fast sequential decoding algorithm using a stack , 1969 .

[17]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[18]  Masakatu Morii,et al.  An Efficient Universal Coding Algorithm for Noiseless Channel with Symbols of Unequal Cost , 1997 .

[19]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[20]  Pushpa N. Rathie,et al.  On the entropy of continuous probability distributions (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[21]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[22]  J. Ziv,et al.  Universal sequential decoding , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[23]  Sanjeev R. Kulkarni,et al.  Source codes as random number generators , 1997, Proceedings of IEEE International Symposium on Information Theory.

[24]  Mark Stamp,et al.  An algorithm for the k-error linear complexity of binary sequences with period 2n , 1993, IEEE Trans. Inf. Theory.

[25]  Rudolf Ahlswede,et al.  Universal coding of integers and unbounded search trees , 1997, IEEE Trans. Inf. Theory.

[26]  Georges A. Darbellay,et al.  Predictability: An Information-Theoretic Perspective , 1998 .

[27]  Jacob Ziv,et al.  Universal decoding for finite-state channels , 1985, IEEE Trans. Inf. Theory.

[28]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[29]  QUENTIN F. STOUT Improved Prefix Encodings of the Natural Numbers , 1998 .

[30]  Ralph M. Krause,et al.  Channels Which Transmit Letters of Unequal Duration , 1962, Inf. Control..

[31]  P. Elias The Efficient Construction of an Unbiased Random Sequence , 1972 .

[32]  Vladimir B. Balakirsky An upper bound on the distribution of computation of a sequential decoder for multiple-access channels , 1996, IEEE Trans. Inf. Theory.

[33]  D. V. Gokhale,et al.  Entropy expressions and their estimators for multivariate distributions , 1989, IEEE Trans. Inf. Theory.

[34]  Daniel J. Costello,et al.  Polynomial weights and code constructions , 1973, IEEE Trans. Inf. Theory.

[35]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[36]  Anand S. Bedekar,et al.  The Information-Theoretic Capacity of Discrete-Time Queues , 1997, IEEE Trans. Inf. Theory.

[37]  Igor Vajda,et al.  Entropy expressions for multivariate continuous distributions , 2000, IEEE Trans. Inf. Theory.

[38]  Sergio Verdú,et al.  Bits through queues , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[39]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[40]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[41]  Andrew Chi-Chih Yao,et al.  An Almost Optimal Algorithm for Unbounded Searching , 1976, Inf. Process. Lett..