Computational Studies of the Structure, Behavior upon Heating, and Mechanical Properties of Graphite Oxide

A Monte Carlo based scheme for the formation of graphite oxide (GO) was developed and implemented. A Rosenbluth factor was used to select intermediate structures in an attempt to form stable, low-energy, and realistic GO. The scheme resulted in the production of GO that has an interplanar spacing of 5.8 A, in good agreement with the experimental value (5.97 A). Epoxide and hydroxyl functional groups dominate the basal planes, a finding that is consistent with experiment. Individual sheets are wrinkled with an average root-mean-square deviation of 0.33 ± 0.04 A. Hydrogen bonding between hydroxyl groups and between hydroxyl and epoxide groups has significant impact on the stability of many structures. Molecular dynamics simulations, guided by forces from electronic structure calculations, were performed to examine the behavior of GO when heated to room (300 K) and thermal exfoliation (1323 K) temperatures. Hydrogen-transfer reactions that catalyze the migration of epoxide groups were observed at both temper...

[1]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[2]  Ted Belytschko,et al.  Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets , 2007 .

[3]  R. Shanks,et al.  Morphology, Thermal Stability, and Mechanical Behavior of [Poly(propylene)‐grafted Maleic Anhydride]‐Layered Expanded Graphite Oxide Composites , 2007 .

[4]  S. Stankovich,et al.  Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) , 2006 .

[5]  S. Stankovich,et al.  Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets , 2006 .

[6]  M. Elstner The SCC-DFTB method and its application to biological systems , 2006 .

[7]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[8]  P. Ajayan,et al.  Material science: Oxygen breaks into carbon world , 2006, Nature.

[9]  Imre Dékány,et al.  Evolution of surface functional groups in a series of progressively oxidized graphite oxides , 2006 .

[10]  R. Car,et al.  Oxygen-driven unzipping of graphitic materials. , 2006, Physical review letters.

[11]  Imre Dékány,et al.  Hydration behavior and dynamics of water molecules in graphite oxide , 2006 .

[12]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[13]  Imre Dékány,et al.  Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides , 2006 .

[14]  Zhaobo Wang,et al.  Ni-Fe-Co-P coatings on coiled carbon nanofibers , 2005 .

[15]  T. Belytschko,et al.  Fracture paths and ultrananocrystalline diamond , 2005 .

[16]  Dimitrios Gournis,et al.  Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids , 2003 .

[17]  T. Fukutsuka,et al.  Synthesis of polyaniline-intercalated layered materials via exchange reaction , 2002 .

[18]  Thomas Frauenheim,et al.  Atomistic simulations of complex materials: ground-state and excited-state properties , 2002 .

[19]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[20]  Mitani,et al.  Stiffness of single-walled carbon nanotubes under large strain , 2000, Physical review letters.

[21]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[22]  I. Dékány,et al.  Selective liquid sorption properties of hydrophobized graphite oxide nanostructures , 1998 .

[23]  R. T. Yang,et al.  Ab Initio Molecular Orbital Study of the Unified Mechanism and Pathways for Gas-Carbon Reactions† , 1998 .

[24]  Jacek Klinowski,et al.  Structure of Graphite Oxide Revisited , 1998 .

[25]  Jacek Klinowski,et al.  A new structural model for graphite oxide , 1998 .

[26]  Jacek Klinowski,et al.  Solid-State NMR Studies of the Structure of Graphite Oxide , 1996 .

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  N. Kotov,et al.  Ultrathin graphite oxide–polyelectrolyte composites prepared by self‐assembly: Transition between conductive and non‐conductive states , 1996 .

[29]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[30]  H. Boehm.,et al.  Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids , 1969 .

[31]  J. M. Cowley,et al.  Structure of Graphitic Oxide , 1962, Nature.

[32]  H. Boehm.,et al.  Untersuchungen zur Struktur des Graphitoxyds , 1957 .

[33]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[34]  G. Ruess Über das Graphitoxyhydroxyd (Graphitoxyd) , 1947 .

[35]  U. Hofmann,et al.  Über die Säurenatur und die Methylierung von Graphitoxyd , 1939 .

[36]  U. Hofmann,et al.  Quellung von Graphit und die Bildung von Graphitsäure , 1930 .

[37]  L. Staudenmaier,et al.  Verfahren zur Darstellung der Graphitsäure , 1898 .

[38]  I. Dékány,et al.  Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer , 2005 .

[39]  M. Xiao,et al.  Direct synthesis of poly(arylenedisulfide)/carbon nanosheet composites via the oxidation with graphite oxide , 2005 .

[40]  Sean C. Smith,et al.  Ab initio modelling of basal plane oxidation of graphenes and implications for modelling char combustion , 2002 .

[41]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[42]  J. Moulijn,et al.  Towards a unified theory of reactions of carbon with oxygen-containing molecules , 1995 .

[43]  Tsuyoshi Nakajima,et al.  Formation process and structure of graphite oxide , 1994 .

[44]  Michel Mermoux,et al.  FTIR and 13C NMR study of graphite oxide , 1991 .

[45]  Tsuyoshi Nakajima,et al.  A new structure model of graphite oxide , 1988 .

[46]  Benjamin Collins Brodie,et al.  On the Atomic Weight of Graphite , 1859 .