Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction.

Electrochemical impedance spectroscopy is used to identify a slow electron transport process in hydrogen evolution catalysed by amorphous molybdenum sulphides on glassy carbon. A new chemical synthesis leads to an amorphous molybdenum sulfide catalyst with a higher electronic conductivity.

[1]  Jingbo Hu,et al.  Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode , 2013 .

[2]  Jin Yu,et al.  Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. , 2013, The journal of physical chemistry letters.

[3]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[4]  Micheál D. Scanlon,et al.  Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution , 2012 .

[5]  H. Vrubel,et al.  Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution , 2012 .

[6]  H. Vrubel,et al.  Hydrogen evolution catalyzed by MoS3 and MoS2 particles , 2012 .

[7]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[8]  Xile Hu,et al.  Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts , 2011 .

[9]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[10]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[11]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[12]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[13]  Juan Bisquert,et al.  Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy , 2005 .

[14]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .

[15]  Juan Bisquert,et al.  Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance. Relaxation of TiO2 Nanoporous in Aqueous Solution , 2000 .

[16]  E. C. Potter,et al.  The Mechanism of the Cathodic Hydrogen Evolution Reaction , 1952 .