Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs

We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">$\mathsf{SODA}\hbox{-}\mathsf{C}$</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">$\mathsf{SODA}\hbox{-}\mathsf{PS}$</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">$(\mathsf{DA})$ </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">$O(\sqrt{T})$</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">$T$</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">$1/\sqrt{t}$</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis.

[1]  Soummya Kar,et al.  Distributed Consensus Algorithms in Sensor Networks: Quantized Data and Random Link Failures , 2007, IEEE Transactions on Signal Processing.

[2]  John N. Tsitsiklis,et al.  Distributed subgradient methods and quantization effects , 2008, 2008 47th IEEE Conference on Decision and Control.

[3]  Anna Scaglione,et al.  Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method , 2013, IEEE Transactions on Automatic Control.

[4]  Sébastien Bubeck,et al.  Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems , 2012, Found. Trends Mach. Learn..

[5]  Mehran Mesbahi,et al.  Online distributed optimization via dual averaging , 2013, 52nd IEEE Conference on Decision and Control.

[6]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[7]  Jason R. Marden,et al.  Designing Games for Distributed Optimization , 2013, IEEE J. Sel. Top. Signal Process..

[8]  Angelia Nedic,et al.  Coordinate Dual Averaging for Decentralized Online Optimization With Nonseparable Global Objectives , 2015, IEEE Transactions on Control of Network Systems.

[9]  Magnus Egerstedt,et al.  Graph Theoretic Methods in Multiagent Networks , 2010, Princeton Series in Applied Mathematics.

[10]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[11]  Jorge Cort,et al.  Distributed Online Convex Optimization Over Jointly Connected Digraphs , 2014 .

[12]  Bahman Gharesifard,et al.  Distributed subgradient-push online convex optimization on time-varying directed graphs , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[13]  Yurii Nesterov,et al.  Primal-dual subgradient methods for convex problems , 2005, Math. Program..

[14]  Tamer Basar,et al.  Distributed algorithms for the computation of noncooperative equilibria , 1987, Autom..

[15]  John N. Tsitsiklis,et al.  Weighted Gossip: Distributed Averaging using non-doubly stochastic matrices , 2010, 2010 IEEE International Symposium on Information Theory.

[16]  Martin J. Wainwright,et al.  Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling , 2010, IEEE Transactions on Automatic Control.

[17]  David Tse,et al.  Optimal Distributed Voltage Regulation in Power Distribution Networks , 2012, ArXiv.

[18]  M. Raginsky,et al.  Decentralized Online Convex Programming with local information , 2011, Proceedings of the 2011 American Control Conference.

[19]  Ιωαννησ Τσιτσικλησ,et al.  PROBLEMS IN DECENTRALIZED DECISION MAKING AND COMPUTATION , 1984 .

[20]  Jaime Llorca,et al.  A decentralized coordination strategy for networked multiagent systems , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[21]  Michael Athans,et al.  Convergence and asymptotic agreement in distributed decision problems , 1982, 1982 21st IEEE Conference on Decision and Control.

[22]  John N. Tsitsiklis,et al.  Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms , 1984, 1984 American Control Conference.

[23]  Johannes Gehrke,et al.  Gossip-based computation of aggregate information , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[24]  Angelia Nedic,et al.  Distributed Optimization Over Time-Varying Directed Graphs , 2015, IEEE Trans. Autom. Control..

[25]  Michael G. Rabbat,et al.  Push-Sum Distributed Dual Averaging for convex optimization , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).