On the Convergence of Difference Schemes for Hyperbolic Problems with Concentrated Data

Hyperbolic equations with unbounded coefficients and even generalized functions (in particular, Dirac-delta functions) occur both naturally and artificially and must be treated in numerical schemes. An abstract operator method is proposed for studying these equations. For finite difference schemes approximating several one-dimensional initial-boundary value problems convergence rate estimates in special discrete energetic Sobolev's norms, compatible with the smoothness of the solutions, are obtained.

[1]  A. A. Samarskii,et al.  The Theory of Difference Schemes , 2001 .

[2]  Pierluigi Colli,et al.  Diffusion through thin layers with high specific heat , 1990 .

[3]  V. S. Vladimirov,et al.  Equations of mathematical physics , 1972 .

[4]  Lubin G. Vulkov,et al.  Energy stability for a class of two-dimensional interface linear parabolic problems , 2005 .

[5]  Lubin G. Vulkov,et al.  Finite Difference Approximation of an Elliptic Interface Problem with Variable Coefficients , 2004, NAA.

[6]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[7]  Lubin G. Vulkov Applications of Steklov-Type Eigenvalue Problems to Convergence of Difference Schemes for Parabolic and Hyperbolic Equations with Dynamical Boundary Conditions , 1996, WNAA.

[8]  Zhi-Zhong Sun,et al.  A second order accurate difference scheme for the heat equation with concentrated capacity , 2004, Numerische Mathematik.

[9]  J. H. Bramble,et al.  Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .

[10]  E. Magenes,et al.  Some new results on a Stefan problem in a concentrated capacity , 1992 .

[11]  Boško S. Jovanović The finite difference method for boundary-value problems with weak solutions , 1993 .

[12]  J. Hadamard,et al.  Leçons D'Analyse Fonctionnelle , 1934, The Mathematical Gazette.

[13]  Lubin G. Vulkov,et al.  Finite Difference Schemes with Variable Weights for Parabolic Equations with Concentrated Capacity , 1997, LSSC.

[14]  Joachim Escher,et al.  Quasilinear parabolic systems with dynamical boundary conditions , 1993 .

[15]  Lubin G. Vulkov,et al.  Operator's Approach to the Problems with Concentrated Factors , 2000, NAA.

[16]  Endre Süli,et al.  Convergence of a Finite-Difference Scheme for Second-Order Hyperbolic Equations with Variable Coefficients , 1987 .

[17]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[18]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[19]  Lubin G. Vulkov,et al.  On the convergence of finite difference schemes for the heat equation with concentrated capacity , 2001, Numerische Mathematik.

[20]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[21]  Lubin G. Vulkov,et al.  Stability of difference schemes for parabolic equations with dynamical boundary conditions and conditions on conjugation , 2005, Appl. Math. Comput..

[22]  Ilia A. Braianov Convergence of a Crank-Nicolson Difference Scheme for Heat Equations with Interface in the Heat Flow and Concentrated Heat Capacity , 1996 .

[23]  Lubin G. Vulkov,et al.  Construction and Convergence of Difference Schemes for a Model Elliptic Equation with Dirac-delta Function Coefficient , 2000, NAA.

[24]  A. Tikhonov,et al.  Equations of Mathematical Physics , 1964 .