C=O‐Bindungsspaltung in Kohlendioxid durch einen Eisen(0)‐Phosphininkomplex

[1]  R. Wolf,et al.  Halide‐Substituted Phosphacyclohexadienyl Iron Complexes: Covalent Structures vs. Ion Pairs , 2018, European Journal of Inorganic Chemistry.

[2]  Y. Diskin‐Posner,et al.  Metal–Ligand Cooperation as Key in Formation of Dearomatized NiII–H Pincer Complexes and in Their Reactivity toward CO and CO2 , 2018, Organometallics.

[3]  Yunho Lee,et al.  Selective Transformation of CO2 to CO at a Single Nickel Center. , 2018, Accounts of chemical research.

[4]  J. Langer,et al.  RuBisCO‐inspirierte CO2‐Aktivierung und Umwandlung durch einen Iridium(I)‐Komplex , 2018 .

[5]  I. Pápai,et al.  RuBisCO-Inspired CO2 Activation and Transformation by an Iridium(I) Complex. , 2018, Angewandte Chemie.

[6]  Dipankar Sahoo,et al.  Direct CO2 Addition to a Ni(0)-CO Species Allows the Selective Generation of a Nickel(II) Carboxylate with Expulsion of CO. , 2018, Journal of the American Chemical Society.

[7]  R. Wolf,et al.  Reaction of a 2,4,6-triphenylphosphinine ferrate anion with electrophiles: a new route to phosphacyclohexadienyl complexes. , 2016, Dalton transactions.

[8]  Y. Diskin‐Posner,et al.  Reductive Cleavage of CO2 by Metal-Ligand-Cooperation Mediated by an Iridium Pincer Complex. , 2016, Journal of the American Chemical Society.

[9]  D. Milstein,et al.  Metall‐Ligand‐Kooperation , 2015 .

[10]  D. Milstein,et al.  Metal-ligand cooperation. , 2015, Angewandte Chemie.

[11]  Sabrina I. Kalläne,et al.  Remarkable reactivity of a rhodium(I) boryl complex towards CO2 and CS2: isolation of a carbido complex. , 2015, Chemical communications.

[12]  Y. Diskin‐Posner,et al.  Synthesis and reactivity of iron complexes with a new pyrazine-based pincer ligand, and application in catalytic low-pressure hydrogenation of carbon dioxide. , 2015, Inorganic chemistry.

[13]  Uttam Chakraborty,et al.  Synthesis, Structure, and Reactivity of Pentamethylcyclopentadienyl 2,4,6-Triphenylphosphinine Iron Complexes , 2015 .

[14]  M. Beller,et al.  Using carbon dioxide as a building block in organic synthesis , 2015, Nature Communications.

[15]  L. Maron,et al.  Controlling selectivity in the reductive activation of CO2 by mixed sandwich uranium(III) complexes , 2014 .

[16]  C. Müller,et al.  Recent Developments in the Chemistry of Pyridyl-functionalized, Low-coordinate Phosphorus Heterocycles , 2014 .

[17]  T. Ema,et al.  Recent progress in catalytic conversions of carbon dioxide , 2014 .

[18]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[19]  Chelsea A. Huff,et al.  Catalytic CO2 Hydrogenation to Formate by a Ruthenium Pincer Complex , 2013 .

[20]  Connie C. Lu,et al.  CO2 reduction by Fe(I): solvent control of C–O cleavage versus C–C coupling , 2013 .

[21]  Y. Diskin‐Posner,et al.  Anionic nickel(II) complexes with doubly deprotonated PNP pincer-type ligands and their reactivity toward CO2 , 2013 .

[22]  C. Müller,et al.  Developments in the Coordination Chemistry of Phosphinines , 2013 .

[23]  G. Schnakenburg,et al.  Deoxygenation of carbon dioxide by electrophilic terminal phosphinidene complexes , 2012 .

[24]  J. Kampf,et al.  Role of a Noninnocent Pincer Ligand in the Activation of CO2 at (PNN)Ru(H)(CO) , 2012 .

[25]  K. Meyer,et al.  Uranium-mediated carbon dioxide activation and functionalization , 2012 .

[26]  Chelsea A. Huff,et al.  Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. , 2011, Journal of the American Chemical Society.

[27]  D. M. D'Alessandro,et al.  Abscheidung von Kohlendioxid: Perspektiven für neue Materialien , 2010 .

[28]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[29]  P. Holland,et al.  Reduction of CO2 to CO using low-coordinate iron: formation of a four-coordinate iron dicarbonyl complex and a bridging carbonate complex. , 2008, Inorganic chemistry.

[30]  A. Spek,et al.  Donor-functionalized polydentate pyrylium salts and phosphinines: synthesis, structural characterization, and photophysical properties. , 2007, Chemistry.

[31]  Connie C. Lu,et al.  Fe(I)-mediated reductive cleavage and coupling of CO2 : An FeII(μ-O,μ-CO)FeII core , 2007 .

[32]  P. Floch,et al.  The Chemistry of Phosphinines: Syntheses, Coordination Chemistry and Catalysis , 2006 .

[33]  P. Floch Phosphaalkene, phospholyl and phosphinine ligands: New tools in coordination chemistry and catalysis , 2006 .

[34]  P. Müller,et al.  Efficient homogeneous catalysis in the reduction of CO2 to CO. , 2005, Journal of the American Chemical Society.

[35]  David J Evans Chemistry relating to the nickel enzymes CODH and ACS , 2005 .

[36]  K. Meyer,et al.  Carbon dioxide reduction and carbon monoxide activation employing a reactive uranium(III) complex. , 2005, Journal of the American Chemical Society.

[37]  H. Mayer,et al.  INTERACTION OF CARBON DIOXIDE WITH IRH2(TBU2)PCH2CH2CHCH2CH2P(TBU2) , 1999 .

[38]  P. Carroll,et al.  Reactions of carbon dioxide and carbon disulfide with .eta.2-silanimine complexes of zirconium: facile deoxygenation and desulfurization reactions , 1993 .

[39]  J. Mayer,et al.  Oxidative addition of carbon dioxide, epoxides, and related molecules to WCl2(PMePh2)4 yielding tungsten(IV) oxo, imido, and sulfido complexes. Crystal and molecular structure of W(O)Cl2(CO)(PMePh2)2 , 1987 .

[40]  C. Bianchini,et al.  Bifunctional activation of carbon dioxide: a case where the basic and acidic sites are not held in the same structure , 1984 .

[41]  C. Floriani,et al.  Carbon dioxide activation. Deoxygenation and disproportionation of carbon dioxide promoted by bis(cyclopentadienyl)titanium and -zirconium derivatives. A novel bonding mode of the carbonato and a trimer of the zirconyl unit , 1979 .

[42]  Pekka Pyykkö,et al.  Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.

[43]  W. C. Kaska,et al.  Reduction of carbon dioxide by {2,6-bis[(di-tert-butylphosphino)methyl]phenyl}dihydridorhodium(III) , 1988 .