Combustion control and sensors: a review

There is an increased interest in the application of control to combustion. The objective is to optimize combustor operation, monitor the process and alleviate instabilities and their severe consequences. One wishes to improve the system performance, for example by reducing the levels of pollutant emissions or by smoothing the pattern factor at the combustor exhaust. In other cases, the aim is to extend the stability domain by reducing the level of oscillation induced by coupling between resonance modes and combustion. As combustion systems have to meet increasingly more demanding air pollution standards, their design and operation becomes more complex. The trend towards reduced NOx levels has led to new developments in different fields. Automotive engines and gas turbine combustors are considered in this article. In the first case, complex exhaust aftertreatment is being applied and dedicated engine control schemes are required to ensure and maintain high pollutant conversion efficiency. For gas turbines, premixed combustors, which operate at lower local temperatures than conventional systems have been designed. In both cases, monitoring and control of the operating point of the process have to be achieved with great precision to obtain the full benefits of the NOx reduction scheme. For premixed combustors operating near the lean stability limit, the flame is more susceptible to blowout, oscillation or flashback. Research is now carried out to reduce these dynamical problems with passive and active control methods. In addition to a broad range of fundamental problems raised by Active Combustion Control (ACC) and Operating Point Control (OPC), there are important technological issues. This paper contains a review of some facets of combustion control and focuses on the sensors that take or could take part to combustion control solutions. The current status of ACC and OPC is presented together with the associated control concepts. The state of the art in sensors is reviewed and their applicability is evaluated. Research efforts in combustion diagnostics are to a certain extent devoted to the development of sensors for control applications. The objective of such developments differs from that which is pursued when one wishes to perform detailed measurements on a laboratory scale experiment. The sensor system should not necessarily provide quantitative measurements because relative data are already useful for control purposes. This change of orientation will be discussed and illustrated by examples of current interest. It is concluded that development in control will depend critically on the availability of sensors and on their reliability, robustness, immunity to noise and capacity to operate in a harsh environment. Research is needed on the fundamentals of ACC and OPC but it should also address the more technical aspects of the problem.

[1]  B. Brown Proceedings of the Society of Photo-optical Instrumentation Engineers , 1975 .

[2]  Jürgen Wolfrum,et al.  TACCOS—A thermography-assisted combustion control system for waste incinerators , 1994 .

[3]  William J. Kessler,et al.  Simultaneous water vapor concentration and temperature measurements using 1.31-micron diode lasers , 1996 .

[4]  Jong Guen Lee,et al.  Optimization of Active Control Systems for Suppressing Combustion Dynamics , 2001 .

[5]  S. Andersson-Engels,et al.  Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system , 1991 .

[6]  Juergen Wolfrum,et al.  Simultaneous laser-based in situ detection of oxygen and water in a waste incinerator for active combustion control purposes , 1998 .

[7]  H. Kurachi,et al.  Thick Film ZrO2 NOx Sensor for the Measurement of Low NOx Concentration , 1998 .

[8]  Petter Strandh,et al.  Fuel and Additive Influence on the Ion Current , 1998 .

[9]  William J. Kessler,et al.  Diode laser instrumentation for aeropropulsion applications , 1995 .

[10]  Junichiro Mizusaki,et al.  Detection of carbon monoxide by using zirconia oxygen sensor , 1995 .

[11]  William J. Kaiser,et al.  A high-sensitivity sensor for the measurement of combustible gas mixtures☆ , 1986 .

[12]  M. Ravichandran,et al.  Determination of Temperature and Concentration Profiles Using (a Limited Number of) Absorption Measurements , 1986 .

[13]  Rainer Müller,et al.  Neural Adaptive Ignition Control , 1998 .

[14]  Yasuhiko Ito,et al.  Effect of Aging on Yttria‐Stabilized Zirconia I. A Study of Its Electrochemical Properties , 1998 .

[15]  Ephraim Gutmark,et al.  Active combustion control in a coaxial dump combustor , 1990 .

[16]  Ronald K. Hanson,et al.  REAL-TIME ADAPTIVE COMBUSTION CONTROL USING DIODE-LASER ABSORPTION SENSORS , 1998 .

[17]  Norio Miura,et al.  Sensing characteristics and mechanisms of hydrogen sulfide sensor using stabilized zirconia and oxide sensing electrode , 1996 .

[18]  Shanmugam Murugappan,et al.  Characteristics and control of combustion instabilities in a swirl-stabilized spray combustor , 1999 .

[19]  Andrzej Banaszuk,et al.  Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part II: Adaptive Control Algorithm Development, Demonstration and Performance Limitations , 2000 .

[20]  Donald J. Patterson,et al.  In-cylinder measurement of mixture maldistribution in a L-head engine , 1995 .

[21]  A. F. Sarofim,et al.  Fossil fuel combustion , 1990 .

[22]  R. Singh,et al.  Gas turbine engine and sensor fault diagnosis using optimisation techniques , 1999 .

[23]  Rolf Brück,et al.  Design Criteria of Catalyst Substrates for NOx Adsorber Function , 2000 .

[24]  Guy Richard Chandler,et al.  An Integrated SCR and Continuously Regenerating Trap System to Meet Future NOx and PM Legislation , 2000 .

[25]  J. M. Beer,et al.  Combustion Technology: Some Modern Developments , 1974 .

[26]  P. McGeehin,et al.  Solid-state gas sensors and monitors , 1984 .

[27]  Tetsuichi Kudo,et al.  Carbon monoxide gas sensor made of stabilized zirconia , 1980 .

[28]  I. A. McGrath,et al.  THE EMISSIVITY OF LUMINOUS FLAMES , 1963 .

[29]  Stephan Gleis,et al.  Active Instability Control (AIC) of Spray Combustors by Modulation of the Liquid Fuel Flow Rate , 1996 .

[30]  Christian Oliver Paschereit,et al.  Control of thermoacoustic instabilities and emissions in an industrial-type gas-turbine combustor , 1998 .

[31]  Mark Gruber,et al.  Continuous water vapor mass flux and temperature measurements in a model scram jet combustor using a diode laser sensor , 1999 .

[32]  Ronald K. Hanson,et al.  Advanced diode laser absorption sensor for in situ combustion measurements of CO2, H2O, and gas temperature , 1998 .

[33]  W. T. Rawlins,et al.  Infrared emission from high-temperature H2O(nu2) - A diagnostic for concentration and temperature , 1996 .

[34]  Martin Summerfield,et al.  Studies of the Mechanism of Flame Stabilization by a Spectral Intensity Method , 1955 .

[35]  R. S. Spindt Air-Fuel Ratios from Exhaust Gas Analysis , 1965 .

[36]  Eric Udd Fiber optic smart structures , 1996 .

[37]  V. Schüle,et al.  Non-Nernstian potentiometric zirconia sensors: screening of potential working electrode materials , 1993 .

[38]  Wolfgang Göpel,et al.  Gas analysis with arrays of solid state electrochemical sensors: implications to monitor HCs and NOx in exhausts , 1996 .

[39]  Yuji Ikeda,et al.  Measurement of the local flamefront structure of turbulent premixed flames by local chemiluminescence , 2000 .

[40]  J. Lee,et al.  Effect of injection location on the effectiveness of an active control system using secondary fuel injection , 2000 .

[41]  Franz Wintrich,et al.  Industrial combustion control using UV emission tomography , 1996 .

[42]  Christopher W. Wilson,et al.  Optical measurements of turbulence and residence time in a gas turbine combustor , 1999 .

[43]  Ronald K. Hanson,et al.  Diode-laser based diagnostic to monitor water-vapor in high-pressure environments , 1999 .

[44]  Y. Scudeller,et al.  Thermal conductivity of ZrO2 thin films , 2000 .

[45]  Hermann Dietz,et al.  Gas-diffusion-controlled solid-electrolyte oxygen sensors , 1982 .

[46]  Lin Wang,et al.  Optimal Idle Speed Control of an Automotive Engine , 1998 .

[47]  Mark G. Allen,et al.  ROOM-TEMPERATURE DIODE LASER MONITORS FOR SPACECRAFT AIR QUALITY , 1997 .

[48]  S. Candel,et al.  A review of active control of combustion instabilities , 1993 .

[49]  Fabian Mauss,et al.  Local Air-Fuel Ratio Measurements Using the Spark Plug as an Ionization Sensor , 1997 .

[50]  Andrew Peter Walker,et al.  Evaluation of NOx Storage Catalysts as an Effective System for NOx Removal from the Exhaust Gas of Leanburn Gasoline Engines , 1995 .

[51]  M. Allen,et al.  Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser. , 1999, Applied optics.

[52]  Mitsunobu Kajitani,et al.  Development of New Ion Current Combustion Control System , 1998 .

[53]  Yuji Ikeda,et al.  Measurements of the combustion characteristics of compound clusters in pressure-atomized spray flame , 1999 .

[54]  Norio Miura,et al.  Stabilized zirconia-based sensor using oxide electrode for detection of NOx in high-temperature combustion-exhausts , 1996 .

[55]  Amita Tripathi Structure des flammes cryotechniques à haute pression , 2001 .

[56]  Cynthia C. Webb,et al.  Phased air/fuel ratio perturbation: A fuel control technique for improved catalyst efficiency , 2000 .

[57]  R. Hanson,et al.  Combustion control using a multiplexed diode-laser sensor system , 1996 .

[58]  Nicolas Docquier,et al.  Operating point control of gas turbine combustor , 2001 .

[59]  M. Q. McQuay,et al.  Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames , 2001 .

[60]  Mark G. Allen,et al.  Design and flight qualification of a diode laser-based optical mass flux sensor , 1998 .

[61]  H. Neumann,et al.  Advanced Planar Oxygen Sensors for Future Emission Control Strategies , 1997 .

[62]  Helmut Eichlseder,et al.  Gasoline Direct Injection - A Promising Engine Concept for Future Demands , 2000 .

[63]  Dimosthenis Trimis,et al.  Optimization of burners by air-ratio-controlled combustion based on Wobbe number measurement , 2000 .

[64]  V. Schüle,et al.  Non-nernstian zirconia sensors for combustion control , 1993 .

[65]  Philip L. Varghese,et al.  Tunable diode laser measurements on nitric oxide in a hypersonic wind tunnel , 1996 .

[66]  Jerry Seitzman,et al.  INTERPRETATION OF OPTICAL EMISSIONS FOR SENSORS IN LIQUID FUELED COMBUSTORS , 2001 .

[67]  Matthias Philipp,et al.  Motronic MED7 for gasoline direct-injection engines: Engine management system and calibration procedures , 1999 .

[68]  Kazuo Shimodaira,et al.  On-Engine Evaluation of Emissions Characteristics of a Variable Geometry Lean-Premixed Combustor , 1995 .

[69]  Roland Kemmler,et al.  Current Status and Prospects for Gasoline Engine Emission Control Technology - Paving the Way for Minimal Emissions , 2000 .

[70]  Robert Jennings Heinsohn,et al.  IX – Effects of Electric Fields on Flames , 1974 .

[71]  Takashi Kobayashi,et al.  Micromachined flow sensor for fuel injection , 2000 .

[72]  G. M. Faeth,et al.  Spectral extinction coefficients of soot aggregates from turbulent diffusion flames , 1996 .

[73]  Joseph R. Griffin,et al.  Second Generation Platinum RTD Exhaust Gas Temperature Sensor for -50°C to 1000°C Measurement , 1998 .

[74]  Norbert Peters,et al.  Approximations for burning velocities and markstein numbers for lean hydrocarbon and methanol flames , 1997 .

[75]  Nicolas Docquier,et al.  CO/O2 Zirconia Sensor Based on a Potentiometric Design , 2001 .

[76]  Andrew J. Yuhas,et al.  Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows , 1996 .

[77]  Mihir K. Sinha,et al.  Physical Properties of Natural Gas , 1985 .

[78]  Sébastien Candel,et al.  Combustion Enhancement by Active Control , 1998 .

[79]  Robert J. Kee,et al.  PREMIX :A F ORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames , 1998 .

[80]  Clifford Johnson,et al.  Online identification approach for adaptive control of combustion instabilities , 1999 .

[81]  Mariano Sans Global Predictive and Optimal Control Applied to Automotive Engine Management , 1998 .

[82]  A. E. Ariffin,et al.  Robust control analysis of a gas-turbine aeroengine , 1997, IEEE Trans. Control. Syst. Technol..

[83]  David A. Owen,et al.  Industrial RB211 Dry Low Emission Combustion , 1993 .

[84]  Robert C. Brown,et al.  Simulation of electric field effects in premixed methane flames , 1993 .

[85]  Silvia Lenaerts,et al.  A Reliable Potentiometric NOx Sensor , 2000 .

[86]  Joseph R. Griffin,et al.  High DI Fuel Detection via Exhaust Gas Temperature Measurement for ULEV , 2000 .

[87]  Pietro Menna,et al.  Light scattering and extinction coefficients for sootforming flames in the wavelength range from 200 nm TO 600 nm , 1982 .

[88]  A. F. Sarofim,et al.  Optical Constants of Soot and Their Application to Heat-Flux Calculations , 1969 .

[89]  Martin Herrs,et al.  Regelung von Verbrennungsprozessen mit Flammensignalen , 2001 .

[90]  Thomas Sattelmayer,et al.  Low NOx Premixed Combustion of MBtu Fuels in a Research Burner , 1996 .

[91]  Alfred Leipertz,et al.  A New Sensor System for Industrial Combustion Monitoring and Control using UV Emission Spectroscopy and Tomography , 1996 .

[92]  Yicheng Lu,et al.  A New Design of Optical In-Cylinder Pressure Sensor for Automotive Applications , 2000 .

[93]  Lambertus Hesselink,et al.  Digital Image Processing in Flow Visualization , 1988 .

[94]  Dennis Craig Reed,et al.  Closed-Loop Air-Fuel Ratio Control Using Forced Air-Fuel Ratio Modulation , 1998 .

[95]  Domenic A. Santavicca,et al.  Measurement of equivalence ratio fluctuation and its effect on heat release during unstable combustion , 2000 .

[96]  Yoshihiko Sadaoka,et al.  Influence of humidity on a potentiometric CO{sub 2} gas sensor using a combined electrolyte of sodium ion conducting glass and stabilized zirconia , 1998 .

[97]  Nobuhiro Hayakawa,et al.  A Fast Light Off Thimble-type Oxygen Sensor , 1998 .

[98]  David K. Chen,et al.  Optimization of Oxygen Sensor , 2000 .

[99]  H M Hertz,et al.  Emission tomography of flame radicals. , 1988, Optics letters.

[100]  Michael C. Janus,et al.  Characterization of Oscillations During Premix Gas Turbine Combustion , 1997 .

[101]  A. Thomas,et al.  Sound emission from open turbulent premixed flames , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[102]  A. J. Haagen-Smit Chemistry and Physiology of Los Angeles Smog , 1952 .

[103]  B. J. Hughey,et al.  A Comparison of Techniques for Reconstructing Axisymmetric Reacting Flow Fields from Absorption Measurements , 1982 .

[104]  P. Kuentzmann,et al.  Active control of combustion instabilities on a rijke tube using neural networks , 2000 .

[105]  Jeffrey M. Cohen,et al.  Active Control of Combustion Instability in a Liquid–Fueled Low–NOx Combustor , 1998 .

[106]  F. Lacas,et al.  Experimental and numerical study of chemiluminescence in methane/air high-pressure flames for active control applications , 2000 .

[107]  Ajay K. Agrawal,et al.  Active Control of Combustion for Optimal Performance , 1999 .

[108]  W. Kessler,et al.  Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets. , 1996, Applied optics.

[109]  Koichi Shimamura,et al.  Compact Thick Film Type Oxygen Sensor , 1999 .

[110]  S. Candel,et al.  Theoretical and experimental determinations of the transfer function of a laminar premixed flame , 2000 .

[111]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[112]  Mark W. Verbrugge,et al.  Theory and Simulation of Solid‐Electrolyte Wide‐Range Sensors for Combustion‐Gas Streams , 1996 .

[113]  Jan Nytomt,et al.  Ion-Gap Sense in Misfire Detection, Knock and Engine Control , 1995 .

[114]  Peter R. Solomon,et al.  FT-IR emission/transmission spectroscopy for in situ combustion diagnostics , 1988 .

[115]  M. Allen,et al.  Diode laser absorption sensors for gas-dynamic and combustion flows. , 1998, Measurement science & technology.

[116]  Andrew Peter Walker,et al.  High Performance Diesel Catalysts for Europe Beyond 1996 , 1995 .

[117]  Fokion N. Egolfopoulos,et al.  CO2* Chemiluminescence in Premixed Flames , 1995 .

[118]  Alexander B. Fialkov,et al.  Investigations on ions in flames , 1997 .

[119]  M. P. Arroyo,et al.  Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor. , 1994, Applied optics.

[120]  Giorgio Rizzoni,et al.  Performance of a Ceramic CO Sensor in the Automotive Exhaust System , 1995 .

[121]  A. G. Gaydon,et al.  The identification of molecular spectra , 1950 .

[122]  Torger Anderson,et al.  Measurements of fuel/air-acoustic coupling in lean premixed combustion systems , 1999 .

[123]  Ronald K. Hanson,et al.  Diode Laser Sensor for Velocity Measurements in Hypervelocity Flows , 1999 .

[124]  M. G. Allen,et al.  An imaging neural network combustion control system for utility boiler applications , 1993 .

[125]  Koji Moriya,et al.  Combustion monitoring sensor using tin dioxide semiconductor , 1991 .

[126]  Eric de Borniol,et al.  Automotive exhaust gas analysis by infrared tunable diode laser absorption spectroscopy , 1997, Other Conferences.

[127]  S. Candel,et al.  Investigation of Cryogenic Propellant Flames Using Computerized Tomography of Emission Images , 1998 .

[128]  Mohieddine Benammar,et al.  Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors. A review , 1994 .

[129]  Marshall B. Long,et al.  Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame , 1998 .

[130]  T. Croonenbroek Diagnostics optiques appliques aux milieux reactifs (diffusion rayleigh, fluorscence induite par laser, absorption, analyse de la chimiluminescence,. . . ) application aux flammes laminaires etirees a contre-courant , 1996 .

[131]  David S. Dandy,et al.  Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane-Air Flames , 1992 .

[132]  Masaharu Hasei,et al.  New Total-NOx Sensor Based on Mixed Potential for Automobiles , 1999 .

[133]  Yuji Ikeda,et al.  Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames , 2000 .

[134]  E. Gutmark,et al.  Closed-Loop Amplitude Modulation Control of Reacting Premixed Turbulent Jet , 1991 .

[135]  Christian Oliver Paschereit,et al.  Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Combustor , 1998 .

[136]  Ming Chia Lai,et al.  In-cylinder air/fuel ratio approximation using spark gap ionization sensing , 1998 .

[137]  Claude Alibert,et al.  Tunable diode laser absorption spectroscopy of carbon monoxide around 2.35 μm , 1998 .

[138]  R. Hanson,et al.  Diode laser sensor for measurements of CO, CO(2), and CH(4) in combustion flows. , 1997, Applied optics.

[139]  William J. Fleming,et al.  Physical Principles Governing Nonideal Behavior of the Zirconia Oxygen Sensor , 1977 .

[140]  A. G. Gaydon The spectroscopy of flames , 1957 .

[141]  C. L. Tien,et al.  Optical constants of soot in hydrocarbon flames , 1981 .

[142]  Jacob Brouwer,et al.  Active control for gas turbine combustors , 1991 .

[143]  Robert J. Santoro,et al.  An experimental estimation of mean reaction rate and flame structure during combustion instability in a lean premixed gas turbine combustor , 2000 .

[144]  William J. Kessler,et al.  Tomographic reconstruction of air temperature and density profiles using tunable diode laser absorption measurements on O2 , 1995 .

[145]  Olivier Charon,et al.  Industrial combustion monitoring using optical sensors , 1999, Other Conferences.

[146]  R. Hanson,et al.  Diode-Laser Absorption Measurements of CO(2) Near 2.0 mum at Elevated Temperatures. , 1998, Applied optics.

[147]  Michael E. Webber,et al.  Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm , 1998 .

[148]  D. A. Santavicca,et al.  Mechanism of Combustion Instability in a Lean Premixed Dump Combustor , 1999 .

[149]  Christoph Hassa,et al.  NOx Reduction by Lean Premixed Prevaporized Combustion , 1998 .

[150]  G. S. Samuelsen,et al.  Optimization of gas turbine combustor performance throughout the duty cycle , 1996 .

[151]  Bertrand Lemire,et al.  Long Term Stable NOx Sensor with Integrated In-Connector Control Electronics , 1999 .

[152]  G. S. Samuelsen,et al.  Active, optimal control of a model industrial, natural gas-fired burner , 1994 .

[153]  Norio Miura,et al.  Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes , 1998 .

[154]  Nicolas Docquier,et al.  Optimal Operation of a Combined NOx/Oxygen Zirconia Sensor Under Lean Burn Conditions , 2000 .

[155]  Ephraim Gutmark,et al.  Use of chemiluminescence and neural networks in active combustion control , 1991 .

[156]  C. J. Norman Zirconium Oxide Products in Automotive Systems , 1997 .

[157]  Johana Vally Etude du spectre d'émission infrarouge des gaz de combustion : application à la mesure de température de gaz et de concentration de CO2 , 1999 .

[158]  Anders H. Andersen,et al.  Tomography transform and inverse in geometrical optics , 1987 .

[159]  Yuji Ikeda,et al.  Measuring local OH* to analyze flame front movement in a turbulent premixed flame , 1999 .

[160]  R. Hartung,et al.  Possibilities of NOx and CHx determination using galvanic cells with perovskite-electrodes on YSZ , 1996 .

[161]  Thomas Sattelmayer,et al.  Low-Nox Premixed Combustion of MBtu Fuels Using the ABB Double Cone Burner (EV Burner) , 1996 .

[162]  Lars Eriksson,et al.  Closed Loop Ignition Control by Ionization Current Interpretation , 1997 .

[163]  Domenic A. Santavicca,et al.  Fiber-Optic Probe for Laser-Induced Fluorescence Measurements of the Fuel-Air Distribution in Gas-Turbine Combustors , 1997 .

[164]  S. Correa A Review of NOx Formation Under Gas-Turbine Combustion Conditions , 1993 .

[165]  Dieter Vortmeyer,et al.  Active instability control with direct-drive servo valves in liquid-fueled combustion systems , 1996 .

[166]  W. C. Maskell,et al.  Solid state potentiometric oxygen gas sensors , 1986 .

[167]  P. Ferrão,et al.  Flame three-dimensional tomography sensor for in-furnace diagnostics , 2000 .

[168]  Eric J. Detwiler,et al.  A Study of a Fast Light-Off Planar Oxygen Sensor Application for Exhaust Emissions Reduction , 2000 .

[169]  J. Fouletier,et al.  Gas analysis with potentiometric sensors. a review , 1982 .

[170]  William J. Kessler,et al.  Near-IR diode lasers for in-situ measurements of combustor and aeroengine emissions , 1997 .

[171]  Norio Miura,et al.  Mixed potential type NO{sub x} sensor based on stabilized zirconia and oxide electrode , 1996 .

[172]  Nariyoshi Kobayashi,et al.  Combustion Oscillation Analysis of Premixed Flames at Elevated Pressures , 1998 .

[173]  Hiroshi Matsuzaki,et al.  Oxygen Sensor for CNG Application as ULEV or Tighter Emission Vehicle , 1998 .

[174]  Garth Michael Meyer,et al.  Lean NOx Trap Desulfation Through Rapid Air Fuel Modulation , 2000 .

[175]  Norio Miura,et al.  High-temperature sensors for NO and NO2 based onstabilized zirconiaand spinel-type oxide electrodes , 1997 .

[176]  Ümit Özgür Köylü Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames : Implications for soot surface growth and total emissivity , 1997 .

[177]  Vadim I. Utkin,et al.  Automotive engine diagnosis and control via nonlinear estimation , 1998 .

[178]  R. W. Hardin DIODE LASERS PINPOINT POLLUTANTS , 1998 .

[179]  Yutaka Ohashi,et al.  The Application of Ionic Current Detection System for the Combustion Condition Control , 1998 .

[180]  Jian Wang,et al.  In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors , 2000 .

[181]  M. P. Arroyo,et al.  Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser. , 1993, Applied optics.

[182]  Nicholas C. Corbett,et al.  Control Requirements for the RB 211 Low Emission Combustion System , 1993 .

[183]  J. A. Silver,et al.  Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser. , 1992, Applied optics.

[184]  D M Sonnenfroh,et al.  Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser. , 1997, Applied optics.

[185]  Jacobus H. Visser,et al.  Sensors for measuring combustibles in the absence of oxygen , 1992 .

[186]  Seajin Oh,et al.  Planar-type, gas diffusion-controlled oxygen sensor fabricated by the plasma spray method , 1993 .

[187]  P. R. Smy,et al.  The variation of ionization with air/fuel ratio for a spark‐ignition engine , 1976 .

[188]  Michael D. Cooper,et al.  Sensor-based analyzer for continuous emission monitoring in gas pipeline applications , 1998 .

[189]  James A Jahnke,et al.  Continuous Emission Monitoring , 2022 .

[190]  Masaharu Hasei,et al.  Sensing Performance for Low NOx in Exhausts with NOx Sensor Based on Mixed Potential , 2000 .

[191]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[192]  Margaret Simonson,et al.  Apparatus for studying premixed laminar flames using mass spectrometry and fiber‐optic spectrometry , 1990 .

[193]  Fabian Mauss,et al.  IN-CYLINDER PRESSURE MEASUREMENTS USING THE SPARK PLUG AS AN IONIZATION SENSOR , 1997 .

[194]  Takashi Kawano,et al.  A highly selective CO sensor using LaMnO3 electrode-attached zirconia galvanic cell , 1997 .

[195]  M. Ohba,et al.  Application of Reduced Order Model to Automotive Engine Control System , 1987 .

[196]  François Lacas,et al.  Réduction de la production des oxydes d'azote (NOX) dans une flamme de diffusion à fioul par excitation acoustique , 1996 .

[197]  W. Kessler,et al.  Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors. , 1995, Applied optics.

[198]  Alan H. Lettington,et al.  Gas Turbine Exhaust Emissions Monitoring Using Nonintrusive Infrared Spectroscopy , 1998 .

[199]  Michael E. Webber,et al.  Diode-Laser Sensors for Real-Time Control of Pulsed Combustion Systems , 1999 .

[200]  Anuradha M. Annaswamy,et al.  Modeling and Control of Combustion Instability Using Fuel Injection , 2001 .

[201]  A. Vogel,et al.  Modern Optical Techniques in Fluid Mechanics , 1984 .

[202]  Ronald K. Hanson,et al.  Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers , 1996 .

[203]  Kwang Min Chun,et al.  A Study on the Transient Knock Control in a Spark-Ignition Engine , 1998 .

[204]  R. J. Roby,et al.  Improved Method for Flame Detection in Combustion Turbines , 1995 .

[205]  Juergen Wolfrum,et al.  SIMULTANEOUS DIODE-LASER-BASED IN SITU DETECTION OF MULTIPLE SPECIES AND TEMPERATURE IN A GAS-FIRED POWER PLANT , 2000 .

[206]  Takashi Kashiwagi,et al.  Simultaneous optical measurement of soot volume fraction and temperature in premixed flames , 1994 .

[207]  Raymond Reinmann,et al.  An Ionization Equilibrium Analysis of the Spark Plug as an Ionization Sensor , 1996 .

[208]  Shohji Tsushima,et al.  Observation of combustion characteristics of droplet clusters in a premixed-spray flame by simultaneous monitoring of planar spray images and local chemiluminescence , 1998 .

[209]  Anuradha M. Annaswamy,et al.  Impact of Linear Coupling on the Design of Active Controllers for the Thermoacoustic Instability , 1997 .

[210]  S. Samuelsen,et al.  Robust Optimal Control of a Natural Gas-Fired Burner for the Control of Oxides of Nitrogen(NOx) , 1997 .

[211]  K. Schäfer,et al.  Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy. , 1997, Applied optics.

[212]  Riti Singh,et al.  Gas Turbine Engine and Sensor Fault Diagnosis Using Optimization Techniques , 2002 .

[213]  J. Lerner,et al.  Spectroscopy and hybrid neural network analysis , 1996, Proc. IEEE.

[214]  Philip John Bowen,et al.  Cyclic variations and control of a batch-loaded biomass gasifier-combustor , 1996 .

[215]  Xiaoguo Tang An Artificial UEGO Sensor for Engine Cold Start - Methodology, Design, and Performance , 2000 .

[216]  Kenneth J. Wilson,et al.  Liquid-fueled active instability suppression , 1998 .

[217]  H. F. Calcote Ion production and recombination in flames , 1961 .

[218]  William J. Kessler,et al.  The evolution of a room temperature, near-IR diode laser sensor for combustion-generated NO emissions , 1997 .

[219]  Takafumi Oshima,et al.  NOx Meter Utilizing ZrO2 Pumping Cell , 1998 .

[220]  Bruno Schuermans,et al.  Performance Enhancement of Gas-Turbine Combustor by Active Control of Fuel Injection and Mixing Process-Theory and Practice , 2000 .