Parallel anisotropic 3D mesh adaptation by mesh modification

Improvements to a local modification-based anisotropic mesh adaptation procedure are presented. The first improvement focuses on control of the local operations that modify the mesh to satisfy the given anisotropic mesh metric field. The second is the parallelization of the mesh modification procedures to support effective parallel adaptive analysis. The resulting procedures are demonstrated on general curved 3D domains where the anisotropic mesh size field is defined by either an analytic expression or by an adaptive correction indicator as part of a flow solution process.

[1]  Timothy J. Baker,et al.  Mesh adaptation strategies for problems in fluid dynamics , 1997 .

[2]  G. Kunert Toward anisotropic mesh construction and error estimation in the finite element method , 2002 .

[3]  François Guibault,et al.  Three-dimensional anisotropic geometric metrics based on local domain curvature and thickness , 2005, Comput. Aided Des..

[4]  Arnd Meyer,et al.  A new methodology for anisotropic mesh refinement based upon error gradients , 2004 .

[5]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[6]  David R. Musser,et al.  Fmdb: flexible distributed mesh database for parallel automated adaptive analysis , 2005 .

[7]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[8]  Bharat K. Soni,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[9]  J. Remacle,et al.  Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .

[10]  Mark S. Shephard,et al.  Efficient distributed mesh data structure for parallel automated adaptive analysis , 2006, Engineering with Computers.

[11]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[12]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[13]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[14]  B. Hendrickson,et al.  Zoltan: A Dynamic Load-Balancing Library for Parallel Applications , 2000 .

[15]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .

[16]  Jean-François Remacle,et al.  An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems , 2003, SIAM Rev..

[17]  Jean-François Remacle,et al.  Parallel Algorithm Oriented Mesh Database , 2002, Engineering with Computers.

[18]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[19]  Mark S. Shephard,et al.  Accounting for curved domains in mesh adaptation , 2003 .

[20]  Mark S. Shephard,et al.  anisotropic mesh adaptation by mesh modification , 2005 .

[21]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[22]  Carlo L. Bottasso,et al.  Anisotropic mesh adaption by metric‐driven optimization , 2004 .

[23]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[24]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .