Bulk composition and early differentiation of Mars

[1] We report the concentrations of K, Th, and Fe on the Martian surface, as determined by the gamma ray spectrometer onboard the 2001 Mars Odyssey spacecraft. K and Th are not uniformly distributed on Mars. K ranges from 2000 to 6000 ppm; Th ranges from 0.2 to 1 ppm. The K/Th ratio varies from 3000 to 9000, but over 95% of the surface has K/Th between 4000 and 7000. Concentrations of K and Th are generally higher than those in basaltic Martian meteorites (K = 200–2600 ppm; Th = 0.1–0.7 ppm), indicating that Martian meteorites are not representative of the bulk crust. The average K/Th in the crust is 5300, consistent with the Wanke-Dreibus model composition for bulk silicate Mars. Fe concentrations support the idea that bulk Mars is enriched in FeO compared to Earth. The differences in K/Th and FeO between Earth and Mars are consistent with the planets accreting from narrow feeding zones. The concentration of Th on Mars does not vary as much as it does on the Moon (where it ranges from 0.1 to 12 ppm), suggesting that the primary differentiation of Mars differed from that of the Moon. If the average Th concentration (0.6 ppm) of the surface is equal to the average of the entire crust, the crust cannot be thicker than about 118 km. If the crust is about 57 km thick, as suggested by geophysical studies, then about half the Th is concentrated in the crust.

[1]  Kevin Righter,et al.  Determining the composition of the Earth , 2002, Nature.

[2]  S. McLennan Crustal heat production and the thermal evolution of Mars , 2001 .

[3]  K. Lodders A survey of shergottite, nakhlite and chassigny meteorites whole‐rock compositions , 1998 .

[4]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[5]  J. Fitton,et al.  INCOMPATIBLE TRACE-ELEMENTS IN OIB AND MORB AND SOURCE ENRICHMENT IN THE SUB-OCEANIC MANTLE , 1995 .

[6]  T. Plank,et al.  Element transport from slab to volcanic front at the Mariana arc , 1997 .

[7]  R. Clayton,et al.  Los Angeles: The Most Differentiated Basaltic Martian Meteorite , 2000 .

[8]  C. Herd The oxygen fugacity of olivine‐phyric martian basalts and the components within the mantle and crust of Mars , 2003 .

[9]  B. Dupré,et al.  Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? , 1999 .

[10]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[11]  W. McDonough,et al.  The composition of the Earth , 1995 .

[12]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[13]  W. Hartmann,et al.  Martian Cratering 7: The Role of Impact Gardening , 2001 .

[14]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[15]  John H. Jones,et al.  Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars , 2002 .

[16]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[17]  A. Philpotts,et al.  Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma , 1998, Nature.

[18]  M. Lindstrom,et al.  Geochemistry and petrology of a suite of ten Yamato HED meteorites , 1993 .

[19]  Martin P. Ward,et al.  The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite , 2004 .

[20]  B. Marsh Crystal capture, sorting, and retention in convecting magma , 1988 .

[21]  P. Roeder,et al.  Plagioclase buoyancy in basaltic liquids as determined with a centrifuge furnace , 1978 .

[22]  R. Phillips,et al.  Thermal and crustal evolution of Mars , 2002 .

[23]  Maria T. Zuber,et al.  Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios , 2004 .

[24]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[25]  L. Nyquist,et al.  Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites , 1995, Science.

[26]  P. Christensen,et al.  Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .

[27]  Y. Fei,et al.  Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars , 1998 .

[28]  L. E. Nyquist,et al.  Constraints on Martian differentiation processes from RbSr and SmNd isotopic analyses of the basaltic shergottite QUE 94201 , 1997 .

[29]  F. Albarède,et al.  A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites , 2002, Nature.

[30]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[31]  K. Condie Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales , 1993 .

[32]  G. J. Taylor,et al.  Composition of northern low-albedo regions of Mars : Insights from the Mars Odyssey Gamma Ray Spectrometer , 2007 .

[33]  J. Crisp Rates of magma emplacement and volcanic output , 1984 .

[34]  W. White,et al.  Strontium, neodymium, and lead isotopic and trace-element signatures of the East indonesian sediments: provenance and implications for banda arc magma genesis , 1995 .

[35]  S. Taylor Solar System Evolution: A New Perspective , 2001 .

[36]  Paul H. Warren,et al.  THE MAGMA OCEAN CONCEPT AND LUNAR EVOLUTION , 1985 .

[37]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[38]  M. Zolotov,et al.  Phobos-2 data on martian surface geochemistry , 1994 .

[39]  Mark S. Robinson,et al.  Ferrous oxide in Mercury's crust and mantle , 2001 .

[40]  Thomas H. Prettyman,et al.  LIBRARY LEAST SQUARES ANALYSIS OF LUNAR PROSPECTOR GAMMA RAY SPECTRA. , 2002 .

[41]  T. L. Wright,et al.  Cooling and crystallization of tholeiitic basalt, 1965 Makaopuhi Lava Lake, Hawaii , 1977 .

[42]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[43]  R. Korotev,et al.  The 'North American shale composite' - Its compilation, major and trace element characteristics , 1984 .

[44]  G. Wetherill,et al.  Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. , 1993, Icarus.

[45]  R. Macdonald,et al.  U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles , 1996 .

[46]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[47]  D. H. Scott,et al.  Geologic map of the Elysium region of Mars , 1992 .

[48]  J. Longhi A new view of lunar ferroan anorthosites: Postmagma ocean petrogenesis , 2003 .

[49]  L. Borg,et al.  A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites , 2003 .

[50]  D. Crown,et al.  Geologic evolution of the east rim of the Hellas basin Mars , 1991 .

[51]  G. J. Bamford,et al.  Analysis of Phobos mission gamma ray spectra from Mars , 1992 .

[52]  F. Albarède,et al.  The Lu–Hf isotope geochemistry of shergottites and the evolution of the Martian mantle–crust system , 1999 .

[53]  A. Halliday,et al.  Core formation on Mars and differentiated asteroids , 1997, Nature.

[54]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[55]  C. Agee,et al.  Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle , 2004 .

[56]  G. Wetherill,et al.  Provenance of the terrestrial planets. , 1994, Geochimica et cosmochimica acta.

[57]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[58]  Harry Y. McSween,et al.  Identification of quartzofeldspathic materials on Mars , 2004 .

[59]  S. McLennan Large‐ion lithophile element fractionation during the early differentiation of Mars and the composition of the martian primitive mantle , 2003 .

[60]  T. Wagner,et al.  Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts , 1994 .

[61]  Richard D. Starr,et al.  Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS , 2007 .

[62]  P. Warren 1.21 – The Moon , 2003 .

[63]  G. Gaetani,et al.  The influence of water on melting of mantle peridotite , 1998 .

[64]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[65]  Yu. A. Surkov,et al.  Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. , 1987 .

[66]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[67]  S. Taylor,et al.  Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust , 1980 .

[68]  M. Norman The composition and thickness of the crust of Mars estimated from rare earth elements and neodymium‐isotopic compositions of Martian meteorites , 1999 .

[69]  H. Waenke,et al.  The bulk composition, mineralogy and internal structure of Mars , 1992 .

[70]  P. Warren Magnesium oxide‐iron oxide mass balance constraints and a more detailed model for the relationship between eucrites and diogenites , 1997 .

[71]  P. Beattie The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies , 1993 .

[72]  R. Burns Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars , 1993 .

[73]  H. Y. McSween,et al.  Addendum: Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[74]  H. Wänke,et al.  Chemistry and accretion history of Mars , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[75]  M. Minitti,et al.  Genesis of the Mars Pathfinder “sulfur-free” rock from SNC parental liquids , 2000 .

[76]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[77]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[78]  L. Taylor,et al.  Spinels and oxygen fugacity in olivine‐phyric and lherzolitic shergottites , 2003 .

[79]  P. C. Hess,et al.  Possible formation of ancient crust on Mars through magma ocean processes , 2005 .

[80]  J. Chambers Making More Terrestrial Planets , 2001 .

[81]  W. Kiefer Melting in the martian mantle: Shergottite formation and implications for present‐day mantle convection on Mars , 2003 .

[82]  L. Borg,et al.  The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites , 2005 .

[83]  Richard D. Starr,et al.  Variations in K/Th on Mars , 2007 .

[84]  H. Wiesmann,et al.  The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics , 2003 .

[85]  Paul H. Warren,et al.  The origin of KREEP , 1979 .

[86]  K. Mezger,et al.  Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry , 2002, Nature.

[87]  M. Paterson,et al.  Experimental deformation of partially-melted granite , 1979 .

[88]  Trent M. Hare,et al.  Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes , 2001 .

[89]  K. Lodders An Oxygen Isotope Mixing Model for the Accretion and Composition of Rocky Planets , 2000 .

[90]  John W. Morgan,et al.  Chemical composition of Mars , 1979 .

[91]  A. Jambon,et al.  A simple chondritic model of Mars , 1999 .

[92]  Rudolf Rieder,et al.  Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry , 2003 .

[93]  Linda T. Elkins-Tanton,et al.  Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars , 2003 .

[94]  Y. Fei,et al.  Implications of Mars Pathfinder data for the accretion history of the terrestrial planets. , 1998, Science.

[95]  S. Bowring,et al.  The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California , 2002 .

[96]  E. Anders,et al.  Bulk compositions of the moon and earth, estimated from meteorites , 1974 .

[97]  M. Norman Thickness and Composition of the Martian Crust Revisited: Implications of an Ultradepleted Mantle with a Nd Isotopic Composition Like that of QUE94201 , 2002 .

[98]  G. Dreibus,et al.  THE ABUNDANCES OF MAJOR, MINOR, AND TRACE ELEMENTS IN THE EARTH'S MANTLE AS DERIVED FROM PRIMITIVE ULTRAMAFIC NODULES. , 1979 .

[99]  K. Lodders,et al.  Survey and evaluation of eucrite bulk compositions , 1998 .

[100]  V. Sautter,et al.  A new Martian meteorite from Morocco: the nakhlite North West Africa 817 , 2002 .