New Results from Strapdown Airborne Gravimetry Using Temperature Stabilisation

In recent years, the use of a strapdown Inertial Measurement Unit (IMU) for airborne gravimetry has proven itself to be an accurate and resilient measurement system, improving the operational flexibility. The main concern is erroneous long-wavelength information in the resulting estimates, which is suspected to originate from uncompensated long-term drift of the accelerometers, probably originating from temperature variation. For this reason, iMAR navigation has designed a temperature stabilisation box, which allows for temperature stabilisation of their IMU systems. On a regional airborne gravity survey over the Kattegat Sea between Denmark and Sweden, such a temperature stabilised strapdown IMU was operated alongside a traditional spring-type platform-stabilised gravity system from ZLS. An analysis of the difference in gravity estimates at cross-over locations yielded a mean value of −0.3 mGal for the iMAR system with an indicated accuracy of 1.0 mGal. The temperature stabilisation unit therefore effectively limits the accelerometer drift and improves the long-wavelength information. However, a straightforward merging approach, adjusting the line-based mean values of the iMAR estimates to match that of the ZLS estimates, improved the accuracy to 0.8 mGal. This indicates that the long-wavelength information of the stabilised-platform system is still superior to that of the strapdown system.

[1]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[2]  R. B. Harlan Eotvos corrections for airborne gravimetry , 1968 .

[3]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[4]  Lucien J. B. LaCoste,et al.  Gravity measurements in an airplane using state‐of‐the‐art navigation and altimetry , 1982 .

[5]  K. P. Schwarz,et al.  Inertial surveying and geodesy , 1983 .

[6]  K. P. Schwarz,et al.  Inertial gravimetry—A comparison of Kalman filtering-smoothing and post-mission adjustment techniques , 1986 .

[7]  J. Brozena,et al.  The Greenland Aerogeophysics Project: Airborne Gravity, Topographic and Magnetic Mapping of an Entire Continent , 1992 .

[8]  H.-G. Wenzel,et al.  The nanogal software : Earth tide data processing package ETERNA 3.30 , 1996 .

[9]  K. P. Schwarz,et al.  An introduction to airborne gravimetry and its boundary value problems , 1997 .

[10]  Reiner Rummel,et al.  Geodetic boundary value problems in view of the one centimeter geoid , 1997 .

[11]  K. P. Schwarz,et al.  Flight test results from a strapdown airborne gravity system , 1998 .

[12]  Craig Glennie,et al.  A comparison and analysis of airborne gravimetry results from two strapdown inertial/DGPS systems , 1999 .

[13]  Robert Arko,et al.  Airborne gravity and precise positioning for geologic applications , 1999 .

[14]  K. P. Schwarz,et al.  A comparison of stable platform and strapdown airborne gravity , 2000 .

[15]  S. Ferguson,et al.  Experiences with AIRGrav: Results from a New Airborne Gravimeter , 2001 .

[16]  C. Jekeli,et al.  A new approach for airborne vector gravimetry using GPS/INS , 2001 .

[17]  Naser El-Sheimy,et al.  Accuracy Improvement of Stochastic Modeling of Inertial Sensor Errors , 2005 .

[18]  T. H. Stelkens-Kobsch The Airborne Gravimeter Chekan-A at the Institute of Flight Guidance (IFF) , 2005 .

[19]  Arne Vestergaard Olesen,et al.  Airborne Scalar Gravimetry for Regional Gravity Field Mapping and Geoid Determination , 2007 .

[20]  P. Groves Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems , 2007 .

[21]  Michael Studinger,et al.  Comparison of AIRGrav and GT-1A airborne gravimeters for research applications , 2008 .

[22]  Xiaoji Niu,et al.  Analysis and Modeling of Inertial Sensors Using Allan Variance , 2008, IEEE Transactions on Instrumentation and Measurement.

[23]  Franz Barthelmes,et al.  Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models , 2009 .

[24]  Michael G. Sideris International Association of Geodesy Symposia , 2009 .

[25]  Meiping Wu,et al.  SGA-WZ: A New Strapdown Airborne Gravimeter , 2012, Sensors.

[26]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[27]  Kurt Seitz,et al.  Optimized formulas for the gravitational field of a tesseroid , 2013, Journal of Geodesy.

[28]  David Becker,et al.  Drift reduction in strapdown airborne gravimetry using a simple thermal correction , 2015, Journal of Geodesy.

[29]  Paul D. Groves,et al.  Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems , 2012 .

[30]  David Becker,et al.  Advanced Calibration Methods for Strapdown Airborne Gravimetry , 2016 .

[31]  Arne Vestergaard Olesen,et al.  Strapdown Airborne Gravimetry Using a Combination of Commercial Software and Stable-Platform Gravity Estimates , 2017 .

[32]  René Forsberg,et al.  Helicopter Test of a Strapdown Airborne Gravimetry System , 2018, Sensors.

[33]  Tom A. Jordan,et al.  Investigating the distribution of magmatism at the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic data , 2018, Physics of the Earth and Planetary Interiors.

[34]  N. Zahzam,et al.  Absolute marine gravimetry with matter-wave interferometry , 2018, Nature Communications.

[35]  John F. Raquet,et al.  A Regression-Based Methodology to Improve Estimation of Inertial Sensor Errors Using Allan Variance Data , 2019 .

[36]  Bola S Malek,et al.  Gravity surveys using a mobile atom interferometer , 2019, Science Advances.

[37]  Herbert D. Valliant,et al.  The Lacoste & Romberg Air/Sea Gravity Meter , 2019, CRC Handbook of Geophysical Exploration at Sea.

[38]  P. Knudsen,et al.  The DTU17 Global Marine Gravity Field: First Validation Results , 2019, International Association of Geodesy Symposia.