High photodegradation and antibacterial activity of BN–Ag/TiO2 composite nanofibers under visible light

To develop material with good photocatalytic properties for organic compound degradation and bacterial removal, we produced Ag/TiO2 and BN–Ag/TiO2 composite nanofibers that included controlled amounts of boron nitride (BN) nanosheets and silver (Ag). After annealing at 500 °C under air, we used scanning electron microscopy, transmission electron microscopy, Brunauer–Emmet–Teller analysis, X-ray diffraction, energy-dispersive X-ray spectroscopy, Raman spectroscopy, UV-visible reflectance spectroscopy and room temperature photoluminescence to investigate the morphological, structural and optical properties of all samples. The photocatalytic tests using methylene blue under visible light, in repeated and long-term applications, showed that the photodegradation activity of BN(5 wt%)–Ag(3 wt%)/TiO2 composite nanofibers was 17.2 and 2.3 times higher than that of pure TiO2 and Ag(3 wt%)/TiO2 nanofibers, respectively. In antibacterial tests using Gram-negative Escherichia coli, 3 hours of incubation with BN(5 wt%)–Ag(3 wt%)/TiO2 composite nanofibers killed all bacteria. These results indicate that the synthesized BN(5 wt%)–Ag(3 wt%)/TiO2 composite nanofibers can be considered to be a multifunctional material for photodegradation and antibacterial applications.

[1]  R. Habchi,et al.  Influence of graphene oxide doping on the morphology and the magnetic properties of Ni 0.8 Gd 0.2 Fe 2 O 4 nanofibers prepared by electrospinning , 2017 .

[2]  R. Habchi,et al.  Enhanced Visible-Light Photocatalytic Performance of Electrospun rGO/TiO2 Composite Nanofibers , 2017 .

[3]  M. Toparli,et al.  Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances , 2016 .

[4]  Zhen Jin,et al.  Synthesis of Ag-decorated porous TiO 2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity , 2016 .

[5]  R. Viter,et al.  Synthesis of novel ZnO/ZnAl2O4 multi co-centric nanotubes and their long-term stability in photocatalytic application , 2016 .

[6]  I. Iatsunskyi,et al.  Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates , 2016 .

[7]  M. Bechelany,et al.  Effect of incorporation of boron nitride nanoparticles on the oxygen barrier and thermal properties of poly(3-hydroxybutyrate-co-hydroxyvalerate) , 2016 .

[8]  Yaqing Zhang,et al.  Immobilisation of TiO2 films on activated carbon fibres by a hydrothermal method for photocatalytic degradation of toluene , 2016 .

[9]  M. Bechelany,et al.  Fluorescence Quenching of Sulfo­rhodamine Dye over Graphene Oxide and Boron Nitride Nanosheets , 2016 .

[10]  M. Bechelany,et al.  Novel biocompatible electrospun gelatin fiber mats with antibiotic drug delivery properties. , 2016, Journal of materials chemistry. B.

[11]  Y. Bando,et al.  h-BN nanosheets as simple and effective additives to largely enhance the activity of Au/TiO2 plasmonic photocatalysts. , 2016, Physical chemistry chemical physics : PCCP.

[12]  Jianglei Hu,et al.  Ag-AgBr nanoparticles loaded on TiO2 nanofibers as an efficient heterostructured photocatalyst driven by visible light , 2015 .

[13]  David M. Cwiertny,et al.  Synthesis and optimization of Ag-TiO2 composite nanofibers for photocatalytic treatment of impaired water sources. , 2015, Journal of hazardous materials.

[14]  R. Habchi,et al.  Tunable properties of GO-doped CoFe2O4 nanofibers elaborated by electrospinning , 2015 .

[15]  M. Bechelany,et al.  High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode , 2015 .

[16]  C. Faur,et al.  Dynamic Mechanisms of the Bactericidal Action of an Al2O3-TiO2-Ag Granular Material on an Escherichia coli Strain , 2015, Applied and Environmental Microbiology.

[17]  A. A. Jalil,et al.  Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity , 2015 .

[18]  Wanzhen Xu,et al.  Recent progress in enhancing photocatalytic efficiency of TiO2-based materials , 2015 .

[19]  Zhongyi Jiang,et al.  Synthesis of Ag/TiO2 Nanotube Heterojunction with Improved Visible-Light Photocatalytic Performance Inspired by Bioadhesion , 2015 .

[20]  Tianxi Liu,et al.  Enhanced visible-light photocatalytic performance of electrospun carbon-doped TiO2/halloysite nanotube hybrid nanofibers. , 2015, Journal of colloid and interface science.

[21]  Chao Yin,et al.  Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2 fibers for photocatalytic degradation of black liquor , 2014 .

[22]  T. Lim,et al.  Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities. , 2014, Water research.

[23]  Ding Mingyue,et al.  Hierarchical heterostructure of CdS nanoparticles sensitized electrospun TiO2 nanofibers with enhanced photocatalytic activity , 2014 .

[24]  P. Ajayan,et al.  Designing nanoscaled hybrids from atomic layered boron nitride with silver nanoparticle deposition , 2014 .

[25]  W. W. Leung,et al.  Enhanced photocatalytic activity of electrospun TiO2/ZnO nanofibers with optimal anatase/rutile ratio , 2013 .

[26]  P. Corio,et al.  Effect of silver nanoparticles on TiO2-mediated photodegradation of Alizarin Red S , 2013 .

[27]  Yahui Yang,et al.  Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl2O4 composite hollow microspheres , 2013 .

[28]  Shifu Chen,et al.  Ball milled h-BN: an efficient holes transfer promoter to enhance the photocatalytic performance of TiO2. , 2013, Journal of hazardous materials.

[29]  N. Sarlak,et al.  Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD) , 2012 .

[30]  Zhaoyang Fan,et al.  Comparing graphene-TiO₂ nanowire and graphene-TiO₂ nanoparticle composite photocatalysts. , 2012, ACS applied materials & interfaces.

[31]  N. Gibson,et al.  The Scherrer equation versus the 'Debye-Scherrer equation'. , 2011, Nature nanotechnology.

[32]  Chuncheng Chen,et al.  Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. , 2010, Chemical Society reviews.

[33]  A. Moshfegh,et al.  Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study , 2010 .

[34]  C. Zhi,et al.  Improved TiO2 photocatalytic reduction by the intrinsic electrostatic potential of BN nanotubes. , 2010, Chemistry, an Asian journal.

[35]  Weidong Ruan,et al.  Charge-Transfer-Induced Surface-Enhanced Raman Scattering on Ag−TiO2 Nanocomposites , 2009 .

[36]  Xi Chen,et al.  Synthesis and photocatalytic applications of Ag/TiO2-nanotubes. , 2009, Talanta.

[37]  O. Akhavan,et al.  Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. , 2009, Journal of colloid and interface science.

[38]  Da Chen,et al.  Tuning Photoelectrochemical Performances of Ag−TiO2 Nanocomposites via Reduction/Oxidation of Ag , 2008 .

[39]  S. Doh,et al.  Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. , 2008, Journal of hazardous materials.

[40]  Yuzhu Hu,et al.  High photoluminescence quantum yield of TiO2 nanocrystals prepared using an alcohothermal method. , 2007, Luminescence : the journal of biological and chemical luminescence.

[41]  Michael K. Seery,et al.  Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis , 2007 .

[42]  Krista S. Walton,et al.  Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[43]  H. Fu,et al.  Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity , 2006 .

[44]  Shui-Tong Lee,et al.  Structural analysis of cubic boron nitride films by ultraviolet Raman spectroscopy , 2006 .

[45]  H. Fu,et al.  Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. , 2005, The journal of physical chemistry. B.

[46]  Jaesung Song,et al.  Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying , 2004 .

[47]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[48]  V. Keller,et al.  Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts , 2003 .

[49]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[50]  Yongli He,et al.  Raman scattering study on anatase TiO2 nanocrystals , 2000 .

[51]  Bonamali Pal,et al.  Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties , 1999 .

[52]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[53]  R. Viter,et al.  Enhanced photocatalytic performance of novel electrospun BN/TiO2 composite nanofibers , 2017 .

[54]  Zhiqiang Cheng,et al.  Controllable synthesis of Ag@TiO2 heterostructures with enhanced photocatalytic activities under UV and visible excitation , 2016 .

[55]  R. Viter,et al.  Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO2 nanofibers , 2015 .

[56]  Jiaguo Yu,et al.  Solvothermal synthesis and photocatalytic performance of Mn4+-doped anatase nanoplates with exposed {0 0 1} facets , 2015 .

[57]  Vincent G. Gomes,et al.  Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis , 2015 .

[58]  Hemin Zhang,et al.  Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response , 2011 .

[59]  Neil Genzlinger A. and Q , 2006 .