Inhomogeneity of liquid‐phase‐epitaxial InGaAsP lattice matched on InP: Effects of transient growth

Band‐gap and lattice constant data are presented characterizing the transient composition that occurs at the onset of liquid‐phase‐epitaxial growth of InGaAsP on InP substrates. This compositional inhomogeneity, a region of significantly different band gap and lattice constant than that of the remainder of the layer, is a result of the extreme nonequilibrium conditions that exist in the first milliseconds of growth. The consequences of a thin, strained, and band‐gap‐graded layer within a practical device are considered, and a method of producing crystals free of this basic inhomogeneity is demonstrated. The data permit a calculation of the changes in solidus atomic fraction of each atomic species present in the diffusion‐limited growth, clarifying some aspects of incorporation kinetic effects. A mechanism for the transient growth is considered, based on new data and data of previous work.

[1]  G. Stillman,et al.  High-uniformity liquid phase epitaxial InGaAsP (λ = 1.3 μm) , 1984 .

[2]  N. Holonyak,et al.  Stimulated emission in strained‐layer quantum‐well heterostructures , 1983 .

[3]  G. Stillman,et al.  Measurement of compositional inhomogeneity of liquid phase epitaxial InGaPAs , 1983 .

[4]  W. Bartels Characterization of thin layers on perfect crystals with a multipurpose high resolution x‐ray diffractometer , 1983 .

[5]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[6]  N. Schumaker,et al.  Simulation of slider-induced convection in horizontal LPE slider system , 1982 .

[7]  C. Reynolds,et al.  Influence of cooling rate on the short-time LPE growth of the active layer in (Al, Ga)As dh lasers , 1982 .

[8]  I. Umebu,et al.  Dependence of Rocking Curve for Thin In1-xGaxAs1-yPy Layer on Thickness in a Symmetric Bragg Case , 1982 .

[9]  S. R. Forrest,et al.  Optical response time of In0.53Ga0.47As/InP avalanche photodiodes , 1982 .

[10]  T. Tanahashi,et al.  The effects of impurities and cooling rates on the surface morphology of LPE grown InP , 1982 .

[11]  C. Reynolds,et al.  Analysis of the short-time liquid phase epitaxial growth of AlxGa1-xAs , 1982 .

[12]  S. R. Forrest,et al.  An n‐In0.53Ga0.47As/n‐InP rectifier , 1981 .

[13]  K. Nakajima,et al.  Misfit dislocation‐free In1−xGaxAs1−yPy/InP heterostructure wafers grown by liquid phase epitaxy , 1981 .

[14]  L. W. Cook,et al.  The application of X-ray diffraction measurements in the growth of LPE InGaAsP/InP , 1981 .

[15]  S. Tsuji,et al.  Single-mode semiconductor injection lasers for optical fiber communications , 1981 .

[16]  H. Launois,et al.  Observation of stepwise variations of the lattice parameter on GaxIn1−xAsyP1−y layers grown by liquid phase epitaxy on (100) InP , 1981 .

[17]  J. Hsieh Phase diagram for LPE growth of GaInAsP layers lattice matched to InP substrates , 1981 .

[18]  Y. Hamakawa,et al.  Bandgap Energy of InGaAsP Quaternary Alloy , 1980 .

[19]  T. Yamaoka,et al.  LPE Growth of Misfit Dislocation‐Free Thick In1 − x Ga x As Layers on InP , 1980 .

[20]  N. Holonyak,et al.  Compositional inhomogeneity of liquid phase epitaxial InGaPAs layers observed directly in photoluminescence , 1980 .

[21]  L. W. Cook,et al.  Lattice constant, bandgap, thickness, and surface morphology of InGaAsP-InP layers grown by step-cooling, equilibrium-cooling, supercooling and two-phase-solution growth techniques , 1980 .

[22]  L. W. Cook,et al.  Auger profile study of the influence of lattice mismatch on the LPE InGaAsP-InP heterojunction interface , 1979 .

[23]  J. Matsui,et al.  X-ray study of LEC-grown InP crystals , 1979 .

[24]  T. H. Windhorn,et al.  The influence of LPE growth techniques on the alloy composition of InGaAsP , 1979 .

[25]  W. Bartels,et al.  Determination of the lattice constant of epitaxial layers of III-V compounds , 1978 .

[26]  R. L. Barns,et al.  Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP , 1978 .

[27]  N. Holonyak,et al.  Limitations of the direct‐indirect transition on In1−xGaxP1−zAsz heterojunctions , 1977 .

[28]  A. Izrael,et al.  Double‐crystal spectrometer measurements of lattice parameters and X‐ray topography on heterojunctions GaAs–AlxGa1−xAs , 1976 .

[29]  J. J. Hsieh,et al.  Thickness and surface morphology of GaAs LPE layers grown by supercooling, step-cooling, equilibrium-cooling, and two-phase solution techniques , 1974 .

[30]  L. W. James,et al.  Bandgap and lattice constant of GaInAsP as a function of alloy composition , 1974 .

[31]  R. Moon,et al.  Growth and Characterization of InP ‐ lnGaAsP Lattice-Matched Heterojunctions , 1973 .

[32]  D. Rode Isothermal diffusion theory of LPE: GaAs, GaP, bubble garnet , 1973 .

[33]  L. W. Cook,et al.  Variation of the thickness and composition of lpe InGaAsP, InGaAs, and InP layers grown from a finite melt by the step-cooling technique , 1981 .

[34]  N. Holonyak,et al.  Thin-layer liquid phase epitaxy of InGaPAs heterostructures in short intervals (< 100 ms): Non-diffusion-limited crystal growth , 1981 .

[35]  S. W. Kirchoefer,et al.  Quantum-well Inp-Inl−xGaxPl−zAsz heterostructure lasers grown by liquid phase epitaxy (LPE) , 1980 .

[36]  C. H. L. Goodman,et al.  Crystal growth : theory and techniques , 1974 .