Ship-borne thermal infrared radiometer systems

Abstract This chapter is concerned with the practical realization of ship-borne thermal infrared (TIR) radiometers used to collect fiducial reference measurements (FRM) for satellite derived sea surface temperature (SST) measurements. Since the early 1980s multichannel TIR satellite instruments have delivered an unbroken record of SST from space. However, the long-term record is composed of measurements derived from satellite instruments having quite different design and performance characteristics and includes some intervals when the SST measurement capability was degraded significantly, for instance by the absence of a dual-view SST measurements. Furthermore, the retrieval algorithms used to derive SST from top-of-the-atmosphere thermal radiance have also evolved complicating the merging of satellite data into a single homogenous well-calibrated climate data record (CDR). Over the last 10 years, a new generation of in situ field radiometers has been developed that are required to validate satellite SST measurements with traceability to Systeme International primary standards. These measurements can be used as a reference measurement data set to verify and validate CDRs of satellite derived SST. This paper reviews the successful evolution of field radiometer design choices that have resulted in a modern ship-borne capability to provide the FRM of SST that are needed to demonstrate that the performance of satellite SST retrievals is meeting climate requirements. Requirements are first reviewed from a CDR perspective and the fundamental measurement equations are presented leading to basic ship-borne TIR radiometer instrument design requirements. These are elaborated in the following sections using examples from a variety of instruments that have been deployed in the field. Finally, the chapter concludes with a consideration of innovations expected in the coming years. A companion chapter ( Chapter 5.2 ) presents Field Measurement Campaign design from an end-to-end network perspective and the development of measurement uncertainty budgets.

[1]  William J. Emery,et al.  A Microbolometer Airborne Calibrated Infrared Radiometer: The Ball Experimental Sea Surface Temperature (BESST) Radiometer , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Rosalia Santoleri,et al.  Combining model and geostationary satellite data to reconstruct hourly SST field over the Mediterranean Sea , 2014 .

[3]  A. Cazenave,et al.  The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables , 2013 .

[4]  Christopher J. Merchant,et al.  Extended optimal estimation techniques for sea surface temperature from the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) , 2013 .

[5]  Andrew T. Jessup,et al.  Sea surface temperature signatures of oceanic internal waves in low winds , 2006 .

[6]  Peter Cornillon,et al.  The Past, Present, and Future of the AVHRR Pathfinder SST Program , 2010 .

[7]  Naoki Hirose,et al.  A New Method to Produce Sea Surface Temperature Using Satellite Data Assimilation into an Atmosphere–Ocean Mixed Layer Coupled Model , 2013 .

[8]  William J. Emery,et al.  The Behavior of the Bulk – Skin Sea Surface Temperature Difference under Varying Wind Speed and Heat Flux , 1996 .

[9]  William J. Emery,et al.  The Multi-Channel Infrared Sea Truth Radiometric Calibrator (MISTRC) , 1997 .

[10]  Peter J. Minnett,et al.  The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets , 2006 .

[11]  Lei Guan,et al.  Shipboard measurements of skin SST in the China Seas: Validation of satellite SST products , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[12]  Christopher J. Merchant,et al.  Estimation of Sea Surface Temperature from the Spinning Enhanced Visible and Infrared Imager, improved using numerical weather prediction , 2011 .

[13]  Neuenheimer Feld,et al.  Heat as a Proxy Tracer for Gas Exchange Measurements in the Field: Principles and Technical Realization , 1995 .

[14]  Mordechai Gilo Low-reflectance, durable coatings for infrared lenses , 2013 .

[15]  Hartmut Grassl,et al.  The dependence of the measured cool skin of the ocean on wind stress and total heat flux , 1976 .

[16]  Enric Valor,et al.  A simple equation for determining sea surface emissivity in the 3–15 µm region , 2009 .

[17]  Ian S. Robinson,et al.  The Calibration and Intercalibration of Sea-Going Infrared Radiometer Systems Using a Low Cost Blackbody Cavity , 1999 .

[18]  Andrew T. Jessup,et al.  Skin layer recovery of free‐surface wakes: Relationship to surface renewal and dependence on heat flux and background turbulence , 1998 .

[19]  C. Donlon,et al.  The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system , 2012 .

[20]  Nicolas Pinel,et al.  Polarized infrared reflectivity of one-dimensional Gaussian sea surfaces with surface reflections. , 2013, Applied optics.

[21]  C J Donlon,et al.  Effect of atmospheric radiance errors in radiometric sea-surface skin temperature measurements. , 2000, Applied optics.

[22]  Steven W. Brown,et al.  4. Transfer Standard Filter Radiometers: Applications to Fundamental Scales * * Contribution of the National Institute of Standards and Technology. , 2005 .

[23]  Andrew T. Jessup,et al.  Defining and quantifying microscale wave breaking with infrared imagery , 1997 .

[24]  Nicholas V. Scott,et al.  Wavelet analysis of the surface temperature field at an air–water interface subject to moderate wind stress , 2008 .

[25]  William J. Emery,et al.  Solid-State Radiometer Measurements of Sea Surface Skin Temperature , 1998 .

[26]  M. Colacino,et al.  Sea-surface temperature measurements by infrared radiometer , 1970 .

[27]  William L. Smith,et al.  Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing , 1996 .

[28]  Roger Saunders,et al.  Theoretical algorithms for satellite‐derived sea surface temperatures , 1989 .

[29]  I. J. Barton Interpretation of satellite-derived sea surface temperatures , 2001 .

[30]  John Kennedy,et al.  Using AATSR data to assess the quality of in situ sea-surface temperature observations for climate studies , 2012 .

[31]  P. M. Saunders,et al.  The Temperature at the Ocean-Air Interface , 1967 .

[32]  K. Masuda,et al.  Emissivity of pure and sea waters for the model sea surface in the infrared window regions , 1988 .

[33]  W. Melville,et al.  Laboratory measurements of the generation and evolution of Langmuir circulations , 1998, Journal of Fluid Mechanics.

[34]  Peter J. Minnett,et al.  Autonomous shipboard infrared radiometer system for in situ validation of satellite SST , 2002, SPIE Optics + Photonics.

[35]  Andrew T. Jessup,et al.  Evidence for complete and partial surface renewal at an air‐water interface , 2009 .

[36]  Joel B. Fowler,et al.  A Third Generation Water Bath Based Blackbody Source , 1995, Journal of research of the National Institute of Standards and Technology.

[37]  T. Phulpin,et al.  Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 Μm , 1980 .

[38]  Chuanmin Hu,et al.  A Hybrid Cloud Detection Algorithm to Improve MODIS Sea Surface Temperature Data Quality and Coverage Over the Eastern Gulf of Mexico , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Andrew T. Jessup,et al.  High-resolution airborne infrared measurements of ocean skin temperature , 2005, IEEE Geoscience and Remote Sensing Letters.

[40]  Bernd Jähne,et al.  A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air‐sea heat and gas exchange , 2004 .

[41]  Bernd Jähne,et al.  AIR-WATER GAS EXCHANGE , 1998 .

[42]  Brian Ward,et al.  Influence of rain on air-sea gas exchange: Lessons from a model ocean , 2004 .

[43]  David I. Berry,et al.  The effect of instrument exposure on marine air temperatures: an assessment using VOSClim Data , 2005 .

[44]  Peter J. Minnett,et al.  The Global Ocean Data Assimilation Experiment High-resolution Sea Surface Temperature Pilot Project , 2007 .

[45]  Craig Donlon,et al.  The accuracy of AVHRR SST determined using shipborne radiometers , 1999 .

[46]  Anthony F. Molland,et al.  An overview of the airflow distortion at anemometer sites on ships , 2005 .

[47]  E. D. McAlister,et al.  Infrared-Optical Techniques Applied to Oceanography I. Measurement of Total Heat Flow from the Sea Surface , 1964 .

[48]  Pasqualina M. Sarro,et al.  Thermal sensors based on the seebeck effect , 1986 .

[49]  C. Donlon,et al.  The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission , 2012 .

[50]  C. J. Zappa,et al.  Infrared remote sensing of breaking waves , 1997, Nature.

[51]  Godfrey L. Smith,et al.  Infrared imagery of ocean internal waves , 2004 .

[52]  N. Neumann,et al.  Tunable infrared detector with integrated micromachined Fabry-Perot filter , 2008 .

[53]  M. S. Moustafa,et al.  Resilience of a high latitude Red Sea corals to extreme temperature , 2013 .

[54]  R. A. Wood,et al.  Uncooled thermal imaging with monolithic silicon focal planes , 1993, Optics & Photonics.

[55]  David I. Berry,et al.  A 20 year independent record of sea surface temperature for climate from Along‐Track Scanning Radiometers , 2012 .

[56]  Christopher J. Merchant,et al.  Toward the elimination of bias in satellite retrievals of sea surface temperature: 1. Theory, modeling and interalgorithm comparison , 1999 .

[57]  J. A. Smith,et al.  Temperature and salinity dependence of sea surface emissivity in the thermal infrared , 2005 .

[58]  Nigel P. Fox,et al.  Absolute measurements of black-body emitted radiance , 1998 .

[59]  Tommy D. Dickey,et al.  An overview of sea state conditions and air-sea fluxes during RaDyO , 2012 .

[60]  R. Evans,et al.  Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database , 2001 .

[61]  W. Paul Menzel,et al.  Estimation of sea surface temperatures using GOES-8/9 radiance measurements , 1999 .

[62]  Christopher J. Merchant,et al.  Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval , 2005 .

[63]  I. J. Barton,et al.  The along track scanning radiometer — an analysis of coincident ship and satellite measurements , 1993 .

[64]  Godfrey L. Smith,et al.  The thermal structure of an air–water interface at low wind speeds , 2001 .

[65]  Philip D. Watts,et al.  Wind Speed Effects on Sea Surface Emission and Reflection for the Along Track Scanning Radiometer , 1996 .

[66]  Eric Maddy,et al.  Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. 2: validation using Fourier transform spectrometers. , 2008, Applied optics.

[67]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[68]  Israel Urieli,et al.  Stirling Cycle Engine Analysis , 1983 .

[69]  Claire E. Bulgin,et al.  The sea surface temperature climate change initiative: Alternative image classification algorithms for sea-ice affected oceans , 2015 .

[70]  Julia A. Barsi,et al.  Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010) , 2012 .

[71]  Nathan J. Pust,et al.  Correcting Calibrated Infrared Sky Imagery for the Effect of an Infrared Window , 2009 .

[72]  Barry Ma,et al.  Rain‐induced turbulence and air‐sea gas transfer , 2009 .

[73]  John E. Bertie,et al.  Infrared Intensities of Liquids XX: The Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25°C between 15,000 and 1 cm−1 , 1996 .

[74]  Fabrice Veron,et al.  The Effects of Small-Scale Turbulence on Air-Sea Heat Flux , 2011 .

[75]  Simon J. Hook,et al.  Retrieval of Lake Bulk and Skin Temperatures Using Along-Track Scanning Radiometer ( ATSR-2 ) Data : A Case Study Using Lake Tahoe , 2002 .

[76]  William J. Emery,et al.  On the bulk‐skin temperature difference and its impact on satellite remote sensing of sea surface temperature , 1990 .

[77]  Jin Wu,et al.  On the cool skin of the ocean , 1985 .

[78]  Andrew T. Jessup,et al.  Integrated Ocean Skin and Bulk Temperature Measurements Using the Calibrated Infrared In Situ Measurement System (CIRIMS) and Through-Hull Ports , 2008 .

[79]  C. Donlon,et al.  Diurnal signals in satellite sea surface temperature measurements , 2003 .

[80]  D. Friedman,et al.  Infrared Characteristics of Ocean Water (1.5-15 micro). , 1969, Applied optics.

[81]  William L. Smith,et al.  Sounding the Skin of Water: Sensing Air–Water Interface Temperature Gradients with Interferometry , 1995 .

[82]  Fabrice Veron,et al.  Experiments on the stability and transition of wind-driven water surfaces , 2001, Journal of Fluid Mechanics.

[83]  David Meldrum,et al.  Data Buoy Observations: The Status Quo and Anticipated Developments Over the Next Decade , 2010 .

[84]  Lary W. Pinkley,et al.  Optical properties of sea water in the infrared , 1976 .

[85]  J. Frerick,et al.  SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space , 2010 .

[86]  William J. Emery,et al.  Comparison of satellite‐derived sea surface temperatures with in situ skin measurements , 1987 .

[87]  Roger Saunders,et al.  Towards a bias correction of the AVHRR Pathfinder SST data from 1985 to 1998 using ATSR , 2012 .

[88]  Christopher J. Merchant,et al.  Retrievals of sea surface temperature from infrared imagery: origin and form of systematic errors , 2006 .

[89]  Elizabeth C. Kent,et al.  A comparison of oceanic skin effect parameterizations using shipborne radiometer data , 1996 .

[90]  W. Mcleish,et al.  A radiometric system for airborne measurement of the total heat flow from the sea. , 1970, Applied optics.

[91]  Peter J. Minnett,et al.  A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements , 2012 .

[92]  Andrew T. Jessup,et al.  Microscale wave breaking and air‐water gas transfer , 2001 .

[93]  I. Robinson,et al.  Long-term validation of AATSR SST data products using shipborne radiometry in the Bay of Biscay and English Channel , 2012 .

[94]  T. C. Goel,et al.  Characterization of sol-gel synthesized lead calcium titanate (PCT) thin films for pyro-sensors , 2003 .

[95]  Fabrice Veron,et al.  Measurements of Ocean Surface Turbulence and Wave-Turbulence Interactions (PREPRINT) , 2008 .

[96]  K. H. Berry,et al.  Emissivity of a cylindrical black-body cavity with a re-entrant cone and face , 1981 .

[97]  C. J. Donlon An investigation of the oceanic skin temperature devation , 1994 .

[98]  David I. Berry,et al.  Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers , 2008 .

[99]  Walt McKeown,et al.  A Radiometric Method to Measure the Concentration Boundary Layer Thickness at an Air–Water Interface* , 1997 .

[100]  William J. Emery,et al.  Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements , 2001 .

[101]  Jonah Roberts-Jones,et al.  Daily, Global, High-Resolution SST and Sea Ice Reanalysis for 1985–2007 Using the OSTIA System , 2012 .

[102]  E Theocharous,et al.  CEOS comparison of IR brightness temperature measurements in support of satellite validation. Part II: Laboratory comparison of the brightness temperature of blackbodies. , 2010 .

[103]  Peter J. Minnett,et al.  Sea-surface temperature measurements from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[104]  Craig Donlon,et al.  Observations of the oceanic thermal skin in the Atlantic Ocean , 1997 .

[105]  Simon J. Hook,et al.  Absolute Radiometric In-Flight Validation of Mid Infrared and Thermal Infrared Data From ASTER and MODIS on the Terra Spacecraft Using the Lake Tahoe, CA/NV, USA, Automated Validation Site , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[106]  Nicolas Pinel,et al.  Polarized infrared reflectivity of 2D sea surfaces with two surface reflections , 2014 .

[107]  Peter J. Minnett,et al.  The Miami2001 Infrared Radiometer Calibration and Intercomparison. Part II: Shipboard Results , 2004 .

[108]  Bernd Jähne,et al.  Investigation of transport processes across the sea surface microlayer by infrared imagery , 2004 .

[109]  J. Shaw Degree of linear polarization in spectral radiances from water-viewing infrared radiometers. , 1999, Applied optics.

[110]  Christopher J. Merchant,et al.  NOAA's Sea Surface Temperature Products From Operational Geostationary Satellites , 2008 .

[111]  John Turner,et al.  An Evaluation of a Self-Calibrating Infrared Radiometer for Measuring Sea Surface Temperature , 1995 .

[112]  Christopher J. Zappa,et al.  Microscale Wave Breaking and Its Effect on Air-Water Gas Transfer Using Infrared Imagery , 1999 .

[113]  P. Minnett,et al.  Measurements of the infrared emissivity of a wind-roughened sea surface. , 2005, Applied optics.

[114]  J.M. Haas,et al.  VIIRS (Visible Infrared Imager Radiometer Suite): a next-generation operational environmental sensor for NPOESS , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[115]  Nigel P. Fox,et al.  CEOS comparison of IR brightness temperature measurements in support of satellite validation. Part I: Laboratory and Ocean surface temperature comparison of radiation thermometers. , 2010 .

[116]  Fabrice Veron,et al.  Infrared Techniques for Measuring Ocean Surface Processes , 2008 .

[117]  Peter J. Minnett,et al.  The Miami2001 Infrared Radiometer Calibration and Intercomparison. Part I: Laboratory Characterization of Blackbody Targets , 2004 .

[118]  Seelye Martin,et al.  Measuring the Oceans From Space , 2004 .

[119]  Paul van Delst,et al.  Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. I: Theoretical development and calculations. , 2008, Applied optics.

[120]  Bruce A. Wielicki,et al.  Satellite Instrument Calibration for Measuring Global Climate Change: Report of a Workshop , 2004 .

[121]  I. Robinson,et al.  An Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) for Deployment aboard Volunteer Observing Ships (VOS) , 2008 .

[122]  Peter J. Minnett,et al.  Comparisons of Shipboard Infrared Sea Surface Skin Temperature Measurements from the CIRIMS and the M-AERI , 2008 .

[123]  C. Hepplewhite,et al.  Remote observation of the sea surface and atmosphere The oceanic skin effect , 1989 .

[124]  M. Levoy,et al.  The light field , 1939 .

[125]  Craig Donlon,et al.  A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers , 2014 .

[126]  Ivan Savelyev,et al.  Infrared imagery of streak formation in a breaking wave , 2012 .

[127]  P. Minnett,et al.  The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared Spectroradiometer , 2001 .

[128]  William G. Pichel,et al.  Multi-channel improvements to satellite-derived global sea surface temperatures , 1983 .

[129]  X. Wu,et al.  Emissivity of rough sea surface for 8-13 num: modeling and verification. , 1997, Applied optics.

[130]  Ellen J. Prager,et al.  Research combines with public outreach on a cruise ship , 2002 .

[131]  Christopher J. Merchant,et al.  A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: Basis in radiative transfer , 2012 .