Aza-Michael reaction promoted by aqueous sodium carbonate solution

[1]  H. Senn,et al.  Switching the stereochemical outcome of 6-endo-trig cyclizations; synthesis of 2,6-cis-6-substituted 4-oxopipecolic acids. , 2012, The Journal of organic chemistry.

[2]  K. Jiang,et al.  Silicon-based Lewis acid assisted cinchona alkaloid catalysis: highly enantioselective aza-Michael reaction under solvent-free conditions. , 2011, Organic letters.

[3]  Yugen Zhang,et al.  N-heterocyclic carbene-catalyzed aza-Michael addition. , 2011, Organic & biomolecular chemistry.

[4]  Tao Chen,et al.  Green, efficient and practical Michael addition of arylamines to α,β-unsaturated ketones , 2011 .

[5]  E. Busto,et al.  Hydrolases in the stereoselective synthesis of N-heterocyclic amines and amino acid derivatives. , 2011, Chemical reviews.

[6]  S. Schaus,et al.  Multicomponent Mannich reactions with boron enolates derived from diazo esters and 9-BBN. , 2011, Organic letters.

[7]  J. Beattie,et al.  "On-water" conjugate additions of anilines. , 2010, Chemical communications.

[8]  A. Coyne,et al.  Water: nature's reaction enforcer--comparative effects for organic synthesis "in-water" and "on-water". , 2010, Chemical reviews.

[9]  B. Bhanage,et al.  Promiscuous Candida antarctica lipase B-catalyzed synthesis of β-amino esters via aza-Michael addition of amines to acrylates , 2010 .

[10]  A. Chakraborti,et al.  Supramolecular assemblies in ionic liquid catalysis for aza-Michael reaction. , 2010, Organic letters.

[11]  Z. Ge,et al.  An effective aza-Michael addition of aromatic amines to electron-deficient alkenes in alkaline Al2O3 , 2010 .

[12]  R. Luque,et al.  Supported cobalt complex-catalysed conjugate addition of indoles, amines and thiols to α,β-unsaturated compounds , 2010 .

[13]  L. Mander,et al.  Comprehensive Natural Products II: Chemistry and Biology , 2010 .

[14]  B. Das,et al.  Simple and efficient access to N-tosyl beta-amino ketones and their conversion into 2,4-disubstituted azetidines. , 2009, The Journal of organic chemistry.

[15]  M. Kantam,et al.  Nanocrystalline copper(II) oxide catalyzed aza-Michael reaction and insertion of α-diazo compounds into N–H bonds of amines , 2009 .

[16]  J. Legros,et al.  Solvent-promoted and -controlled aza-Michael reaction with aromatic amines. , 2009, The Journal of organic chemistry.

[17]  Anguo Ying,et al.  Aza-Michael addition of aliphatic or aromatic amines to α,β-unsaturated compounds catalyzed by a DBU-derived ionic liquid under solvent-free conditions , 2009 .

[18]  Arani Chanda,et al.  Organic synthesis "on water". , 2009, Chemical reviews.

[19]  Fei Wang,et al.  A highly stereoselective organocatalytic tandem aminoxylation/aza-Michael reaction for the synthesis of tetrahydro-1,2-oxazines. , 2008, Organic letters.

[20]  Lisha You,et al.  Silica gel accelerated aza-Michael addition of amines to α,β-unsaturated amides , 2008 .

[21]  Jie Huang,et al.  Efficient synthesis of α-alkylidene-β-lactams via NaOH-promoted intramolecular aza-Michael addition of α-carbamoyl ketene-S,S-acetals in aqueous media , 2008 .

[22]  B. Bhanage,et al.  Y(NO3)3 · 6H2O catalyzed aza-Michael addition of aromatic/hetero-aromatic amines under solvent-free conditions , 2008 .

[23]  R. Varma,et al.  Tandem bis-aza-Michael addition reaction of amines in aqueous medium promoted by polystyrenesulfonic acid , 2007 .

[24]  Chien-Tien Chen,et al.  Catalytic conjugate additions of nitrogen-, phosphorus-, and carbon-containing nucleophiles by amphoteric vanadyl triflate. , 2007, Organic letters.

[25]  C. Qian,et al.  Promiscuous acylase-catalyzed aza-Michael additions of aromatic N-heterocycles in organic solvent , 2007 .

[26]  F. Piccinelli,et al.  Versatile Base-Catalyzed Route to Polycyclic Heteroaromatic Compounds by Intramolecular Aza-Michael Addition , 2007 .

[27]  A. T. Khan,et al.  Bromodimethylsulfonium bromide mediated Michael addition of amines to electron deficient alkenes , 2007 .

[28]  C. del Pozo,et al.  Microwave-assisted tandem cross metathesis intramolecular Aza-Michael reaction: an easy entry to cyclic beta-amino carbonyl derivatives. , 2007, Journal of the American Chemical Society.

[29]  H. Mayr,et al.  Nucleophilicities of primary and secondary amines in water. , 2007, The Journal of organic chemistry.

[30]  Jianming Xu,et al.  A Basic Ionic Liquid as Catalyst and Reaction Medium: A Rapid and Simple Procedure for Aza‐Michael Addition Reactions , 2007 .

[31]  C. S. Reddy,et al.  ZrCl4-catalyzed aza-Michael addition of carbamates to enones: Synthesis of Cbz-protected β-amino ketones , 2007 .

[32]  Lei Yang,et al.  Efficient catalytic aza-michael additions of carbamates to enones : Revisited dual activation of hard nucleophiles and soft electrophiles by InCl3/TMSCl catalyst system , 2007 .

[33]  B. Das,et al.  Amberlyst-15: An efficient reusable heterogeneous catalyst for aza-Michael reactions under solvent-free conditions , 2007 .

[34]  Samuel A. Delp,et al.  Addition of N−H and O−H Bonds of Amines and Alcohols to Electron-Deficient Olefins Catalyzed by Monomeric Copper(I) Systems: Reaction Scope, Mechanistic Details, and Comparison of Catalyst Efficiency , 2007 .

[35]  M. J. Kim,et al.  1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)-promoted efficient and versatile aza-Michael addition , 2007 .

[36]  B. Ranu,et al.  Significant rate acceleration of the aza-Michael reaction in water , 2007 .

[37]  Jason R. Schmink,et al.  Fast, easy, solvent-free, microwave-promoted Michael addition of anilines to α,β-unsaturated alkenes: synthesis of N-aryl functionalized β-amino esters and acids , 2006 .

[38]  M. R. Saidi,et al.  Highly efficient one-pot three-component Mannich reaction in water catalyzed by heteropoly acids. , 2006, Organic letters.

[39]  R. Chandra,et al.  Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes , 2006 .

[40]  K. R. Rao,et al.  β-Cyclodextrin promoted aza-Michael addition of amines to conjugated alkenes in water , 2006 .

[41]  T. Gunnoe,et al.  Anti-markovnikov N-H and O-H additions to electron-deficient olefins catalyzed by well-defined Cu(I) anilido, ethoxide, and phenoxide systems. , 2006, Journal of the American Chemical Society.

[42]  J. Verkade,et al.  [HP(HNCH2CH2)3N]NO3 : an efficient homogeneous and solid-supported promoter for aza and thia-Michael reactions and for Strecker reactions , 2006 .

[43]  S. Matsunaga,et al.  Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction. , 2005, Journal of the American Chemical Society.

[44]  M. Finn,et al.  "On water": unique reactivity of organic compounds in aqueous suspension. , 2005, Angewandte Chemie.

[45]  C. Xia,et al.  A Catalytic Enantioselective Aza-Michael Reaction: Novel Protocols for Asymmetric Synthesis of β-Amino Carbonyl Compounds , 2005 .

[46]  Thierry Ollevier,et al.  Bismuth Triflate-Catalyzed Three-Component Mannich-Type Reaction , 2004 .

[47]  Dong Chan Kim,et al.  Synthesis and biological activity of novel 1beta-methylcarbapenems with oxyiminopyrrolidinylamide moiety. , 2003, Bioorganic & medicinal chemistry letters.

[48]  J. Spencer,et al.  A general, Brønsted acid-catalyzed hetero-Michael addition of nitrogen, oxygen, and sulfur nucleophiles. , 2003, Organic letters.

[49]  Mei Fang Liu,et al.  Recent advances in the stereoselective synthesis of β-amino acids , 2002 .

[50]  A. Molla,et al.  Synthesis and antiviral activities of the major metabolites of the HIV protease inhibitor ABT-378 (Lopinavir). , 2001, Bioorganic & medicinal chemistry letters.

[51]  S. Gellman,et al.  Antibiotics: Non-haemolytic β-amino-acid oligomers , 2000, Nature.