MCMC-Driven Adaptive Multiple Importance Sampling
暂无分享,去创建一个
Jukka Corander | Luca Martino | Victor Elvira | David Luengo | J. Corander | D. Luengo | V. Elvira | Luca Martino
[1] Luca Martino,et al. Fully adaptive Gaussian mixture Metropolis-Hastings algorithm , 2012, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[2] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[3] Jean-Marie Cornuet,et al. Adaptive Multiple Importance Sampling , 2009, 0907.1254.
[4] O. Cappé,et al. Population Monte Carlo , 2004 .
[5] Petar M. Djuric,et al. Gibbs sampling approach for generation of truncated multivariate Gaussian random variables , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).
[6] A. Owen,et al. Safe and Effective Importance Sampling , 2000 .
[7] R. Carroll,et al. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples , 2010 .
[8] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[9] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[10] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[11] Maurizio Dapor. Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.
[12] Xiaodong Wang,et al. Monte Carlo methods for signal processing: a review in the statistical signal processing context , 2005, IEEE Signal Processing Magazine.
[13] William J. Fitzgerald,et al. Markov chain Monte Carlo methods with applications to signal processing , 2001, Signal Process..
[14] Rong Chen,et al. Monte Carlo Bayesian Signal Processing for Wireless Communications , 2002, J. VLSI Signal Process..
[15] Leonidas J. Guibas,et al. Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.
[16] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[17] Xiaodong Wang,et al. Monte Carlo methods for signal processing , 2005 .