Hidden symmetry-breaking picture of symmetry-protected topological order
暂无分享,去创建一个
[1] K. Duivenvoorden,et al. From symmetry-protected topological order to Landau order , 2013, 1304.7234.
[2] X. Wen,et al. Quantized topological terms in weakly coupled gauge theories and their connection to symmetry protected topological phases , 2012, 1211.2767.
[3] Stephen D. Bartlett,et al. Symmetry protection of measurement-based quantum computation in ground states , 2012, 1207.4805.
[4] Thomas Quella,et al. Topological phases of spin chains , 2012, 1206.2462.
[5] Frank Pollmann,et al. Detection of symmetry-protected topological phases in one dimension , 2012, 1204.0704.
[6] Michael Levin,et al. Braiding statistics approach to symmetry-protected topological phases , 2012, 1202.3120.
[7] Stephen D Bartlett,et al. Symmetry-protected phases for measurement-based quantum computation. , 2012, Physical review letters.
[8] David Pérez-García,et al. Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .
[9] Xiao-Gang Wen,et al. Complete classification of one-dimensional gapped quantum phases in interacting spin systems , 2011, 1103.3323.
[10] K. Okunishi. Topological disentangler for the valence-bond-solid chain , 2010, 1011.3277.
[11] Xiao-Gang Wen,et al. Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.
[12] Xiao-Gang Wen,et al. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.
[13] Frank Pollmann,et al. Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.
[14] Frank Pollmann,et al. Symmetry protection of topological phases in one-dimensional quantum spin systems , 2009, 0909.4059.
[15] Tao Xiang,et al. String order and hidden topological symmetry in the SO(2n + 1) symmetric matrix product states , 2008, 0804.1685.
[16] J I Cirac,et al. String order and symmetries in quantum spin lattices. , 2008, Physical review letters.
[17] G. Vidal. Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.
[18] Frank Verstraete,et al. Matrix product state representations , 2006, Quantum Inf. Comput..
[19] G. Vidal. Entanglement renormalization. , 2005, Physical review letters.
[20] L. Venuti,et al. Analytic relations between localizable entanglement and string correlations in spin systems. , 2005, Physical review letters.
[21] J I Cirac,et al. Renormalization-group transformations on quantum states. , 2004, Physical review letters.
[22] F. Verstraete,et al. Diverging entanglement length in gapped quantum spin systems. , 2003, Physical review letters.
[23] Ya. Berkovich,et al. Characters of Finite Groups. Part 2 , 1998 .
[24] E. Polizzi,et al. S = 1 2 chain-boundary excitations in the Haldane phase of one-dimensional S = 1 systems , 1998, cond-mat/9802163.
[25] Masaki Oshikawa,et al. Hidden Z2*Z2 symmetry in quantum spin chains with arbitrary integer spin , 1992 .
[26] Hal Tasaki,et al. Hidden symmetry breaking and the Haldane phase inS=1 quantum spin chains , 1992 .
[27] M. Nijs,et al. Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. , 1989, Physical review. B, Condensed matter.
[28] E. Lieb,et al. Valence bond ground states in isotropic quantum antiferromagnets , 1988 .
[29] Kennedy,et al. Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.
[30] R. Frucht. Über die Darstellung endlicher Abelscher Gruppen durch Kollineationen. , 2009 .
[31] Kennedy,et al. Hidden Z2 x Z2 symmetry breaking in Haldane-gap antiferromagnets. , 1992, Physical review. B, Condensed matter.