Hidden symmetry-breaking picture of symmetry-protected topological order

We generalize the hidden symmetry-breaking picture of symmetry-protected topological (SPT) order developed by Kennedy and Tasaki in the context of the Haldane phase. Our generalization applies to a wide class of SPT phases in one-dimensional spin chains, protected by an on-site representation of a finite abelian group. This generalization takes the form of a non-local unitary map that relates local symmetry-respecting Hamiltonians in an SPT phase to local Hamiltonians in a symmetry-broken phase. Using this unitary, we establish a relation between the two-point correlation functions that characterize fully symmetry-broken phases with the string-order correlation functions that characterise the SPT phases, therefore establishing the perspective in these systems that SPT phases are characterised by hidden symmetry-breaking. Our generalization is also applied to systems with continuous symmetries, including SO(2k+1) and SU(k).

[1]  K. Duivenvoorden,et al.  From symmetry-protected topological order to Landau order , 2013, 1304.7234.

[2]  X. Wen,et al.  Quantized topological terms in weakly coupled gauge theories and their connection to symmetry protected topological phases , 2012, 1211.2767.

[3]  Stephen D. Bartlett,et al.  Symmetry protection of measurement-based quantum computation in ground states , 2012, 1207.4805.

[4]  Thomas Quella,et al.  Topological phases of spin chains , 2012, 1206.2462.

[5]  Frank Pollmann,et al.  Detection of symmetry-protected topological phases in one dimension , 2012, 1204.0704.

[6]  Michael Levin,et al.  Braiding statistics approach to symmetry-protected topological phases , 2012, 1202.3120.

[7]  Stephen D Bartlett,et al.  Symmetry-protected phases for measurement-based quantum computation. , 2012, Physical review letters.

[8]  David Pérez-García,et al.  Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .

[9]  Xiao-Gang Wen,et al.  Complete classification of one-dimensional gapped quantum phases in interacting spin systems , 2011, 1103.3323.

[10]  K. Okunishi Topological disentangler for the valence-bond-solid chain , 2010, 1011.3277.

[11]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[12]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[13]  Frank Pollmann,et al.  Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.

[14]  Frank Pollmann,et al.  Symmetry protection of topological phases in one-dimensional quantum spin systems , 2009, 0909.4059.

[15]  Tao Xiang,et al.  String order and hidden topological symmetry in the SO(2n + 1) symmetric matrix product states , 2008, 0804.1685.

[16]  J I Cirac,et al.  String order and symmetries in quantum spin lattices. , 2008, Physical review letters.

[17]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[18]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[19]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[20]  L. Venuti,et al.  Analytic relations between localizable entanglement and string correlations in spin systems. , 2005, Physical review letters.

[21]  J I Cirac,et al.  Renormalization-group transformations on quantum states. , 2004, Physical review letters.

[22]  F. Verstraete,et al.  Diverging entanglement length in gapped quantum spin systems. , 2003, Physical review letters.

[23]  Ya. Berkovich,et al.  Characters of Finite Groups. Part 2 , 1998 .

[24]  E. Polizzi,et al.  S = 1 2 chain-boundary excitations in the Haldane phase of one-dimensional S = 1 systems , 1998, cond-mat/9802163.

[25]  Masaki Oshikawa,et al.  Hidden Z2*Z2 symmetry in quantum spin chains with arbitrary integer spin , 1992 .

[26]  Hal Tasaki,et al.  Hidden symmetry breaking and the Haldane phase inS=1 quantum spin chains , 1992 .

[27]  M. Nijs,et al.  Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. , 1989, Physical review. B, Condensed matter.

[28]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[29]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[30]  R. Frucht Über die Darstellung endlicher Abelscher Gruppen durch Kollineationen. , 2009 .

[31]  Kennedy,et al.  Hidden Z2 x Z2 symmetry breaking in Haldane-gap antiferromagnets. , 1992, Physical review. B, Condensed matter.