On the Connection of Uncertainty Principles for Functions on the Circle and on the Real Line
暂无分享,去创建一个
Holger Rauhut | Kathi Selig | Jürgen Prestin | Ewald Quak | H. Rauhut | E. Quak | Jürgen Prestin | Kathi Selig
[1] Gabriele Steidl,et al. Preconditioners for Ill-Conditioned Toeplitz Systems Constructed from Positive Kernels , 2001, SIAM J. Sci. Comput..
[2] I. J. Schoenberg. Cardinal Spline Interpolation , 1987 .
[3] Joseph D. Ward,et al. Wavelets Associated with Periodic Basis Functions , 1996 .
[4] N. Sivakumar,et al. Stability results for scattered‐data interpolation on Euclidean spheres , 1998, Adv. Comput. Math..
[5] M. Tum,et al. Uncertainty Principles Revisited , 2001 .
[6] G. Folland,et al. The uncertainty principle: A mathematical survey , 1997 .
[7] I. J. Schoenberg. Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .
[8] E. Breitenberger,et al. Uncertainty measures and uncertainty relations for angle observables , 1985 .
[9] Jürgen Prestin,et al. Optimal functions for a periodic uncertainty principle and multiresolution analysis , 1999, Proceedings of the Edinburgh Mathematical Society.
[10] Raymond H. Chan,et al. Circulant preconditioners from B-splines , 1997, Optics & Photonics.
[11] Edwin Hewitt,et al. Real And Abstract Analysis , 1967 .
[12] Michael Unser,et al. On the asymptotic convergence of B-spline wavelets to Gabor functions , 1992, IEEE Trans. Inf. Theory.
[13] Roland Girgensohn,et al. Lebesgue Constraints for an Orthogonal Polynomial Schauder Basis , 2000 .
[14] Paul L. Butzer,et al. Fourier analysis and approximation , 1971 .
[15] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .