On the Connection of Uncertainty Principles for Functions on the Circle and on the Real Line

AbstractAn uncertainty principle for 2π-periodic functions and the classical Heisenberg uncertainty principle are shown to be linked by a limit process. Dependent on a parameter, a function on the real line generates periodic functions either by periodization or sampling. It is proven that under certain smoothness conditions, the periodic uncertainty products of the generated functions converge to the real-line uncertainty product of the original function if the parameter tends to infinity. These results are used to find asymptotically optimal sequences for the periodic uncertainty principle, based either on Theta functions or trigonometric polynomials obtained by sampling B-splines.

[1]  Gabriele Steidl,et al.  Preconditioners for Ill-Conditioned Toeplitz Systems Constructed from Positive Kernels , 2001, SIAM J. Sci. Comput..

[2]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[3]  Joseph D. Ward,et al.  Wavelets Associated with Periodic Basis Functions , 1996 .

[4]  N. Sivakumar,et al.  Stability results for scattered‐data interpolation on Euclidean spheres , 1998, Adv. Comput. Math..

[5]  M. Tum,et al.  Uncertainty Principles Revisited , 2001 .

[6]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[7]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[8]  E. Breitenberger,et al.  Uncertainty measures and uncertainty relations for angle observables , 1985 .

[9]  Jürgen Prestin,et al.  Optimal functions for a periodic uncertainty principle and multiresolution analysis , 1999, Proceedings of the Edinburgh Mathematical Society.

[10]  Raymond H. Chan,et al.  Circulant preconditioners from B-splines , 1997, Optics & Photonics.

[11]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[12]  Michael Unser,et al.  On the asymptotic convergence of B-spline wavelets to Gabor functions , 1992, IEEE Trans. Inf. Theory.

[13]  Roland Girgensohn,et al.  Lebesgue Constraints for an Orthogonal Polynomial Schauder Basis , 2000 .

[14]  Paul L. Butzer,et al.  Fourier analysis and approximation , 1971 .

[15]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .