New approximate thresholding/shrinkage formulas for one class of regularization problems with overlapping group sparsity

[1]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[2]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[3]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[4]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[5]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[6]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[7]  Yonina C. Eldar,et al.  C-HiLasso: A Collaborative Hierarchical Sparse Modeling Framework , 2010, IEEE Transactions on Signal Processing.

[8]  M. Kowalski Sparse regression using mixed norms , 2009 .

[9]  Ivan W. Selesnick,et al.  Total variation denoising with overlapping group sparsity , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[10]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[11]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[12]  Francis R. Bach,et al.  Structured Variable Selection with Sparsity-Inducing Norms , 2009, J. Mach. Learn. Res..

[13]  Bingsheng He,et al.  Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities , 1998, Oper. Res. Lett..

[14]  James Theiler,et al.  Local principal component pursuit for nonlinear datasets , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Raymond H. Chan,et al.  Constrained Total Variation Deblurring Models and Fast Algorithms Based on Alternating Direction Method of Multipliers , 2013, SIAM J. Imaging Sci..

[16]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[17]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[18]  Ivan W. Selesnick,et al.  Translation-invariant shrinkage/thresholding of group sparse signals , 2014, Signal Process..

[19]  Julien Mairal,et al.  Structured sparsity through convex optimization , 2011, ArXiv.

[20]  Ilker Bayram,et al.  Mixed norms with overlapping groups as signal priors , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[22]  Michael K. Ng,et al.  Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..

[23]  Zongben Xu,et al.  Fast image deconvolution using closed-form thresholding formulas of regularization , 2013, J. Vis. Commun. Image Represent..

[24]  Babak Hassibi,et al.  On the reconstruction of block-sparse signals with an optimal number of measurements , 2009, IEEE Trans. Signal Process..

[25]  Brendt Wohlberg,et al.  A nonconvex ADMM algorithm for group sparsity with sparse groups , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[27]  Mohamed-Jalal Fadili,et al.  Group sparsity with overlapping partition functions , 2011, 2011 19th European Signal Processing Conference.

[28]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.