On the stability of a periodic solution of distributed parameters biochemical system

This paper studies the stability of periodic solutions of distributed parameters biochemical system with periodic input Sin(t). We prove that if Sin(t) is periodic then the system has a periodic solution that is input to state stable when small perturbations are acting on the input concentration Sin(t).

[1]  N. Macdonald,et al.  Time delay in simple chemostat models , 1976, Biotechnology and bioengineering.

[2]  Denis Dochain,et al.  Periodic trajectories of distributed parameter biochemical systems with time delay , 2012, Appl. Math. Comput..

[3]  M. E. Achhab,et al.  Dynamical Analysis of a Tubular Biochemical Reactor Infinite-Dimensional Nonlinear Model , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[4]  Sergei S. Pilyugin,et al.  Competition in the Unstirred Chemostat with Periodic Input and Washout , 1999, SIAM J. Appl. Math..

[5]  Claude Lobry,et al.  EFFECT ON PERSISTENCE OF INTRA-SPECIFIC COMPETITION IN COMPETITION MODELS , 2007 .

[6]  Huaxing Xia,et al.  Transient oscillations induced by delayed growth response in the chemostat , 2005, Journal of mathematical biology.

[7]  A Genovesi,et al.  Dynamical model development and parameter identification for an anaerobic wastewater treatment process. , 2001, Biotechnology and bioengineering.

[8]  Guowei Dai,et al.  Global branching for discontinuous problems involving the p-Laplacian , 2013 .

[9]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[10]  Denis Dochain,et al.  Modelling of continuous microbial cultivation taking into account the memory effects , 2000 .

[11]  Robert H. Martin,et al.  Nonlinear operators and differential equations in Banach spaces , 1976 .

[12]  Denis Dochain,et al.  Asymptotic Behavior and Stability for Solutions of a Biochemical Reactor Distributed Parameter Model , 2008, IEEE Transactions on Automatic Control.

[13]  F. Mazenc,et al.  Strict Lyapunov functions for semilinear parabolic partial differential equations , 2011 .

[14]  Frédéric Mazenc,et al.  Strict Lyapunov functionals for nonlinear parabolic partial differential equations , 2011 .

[15]  Tsung-fang Wu,et al.  ftp ejde.math.txstate.edu (login: ftp) A FIBERING MAP APPROACH TO A SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEM , 2022 .

[16]  Prodromos Daoutidis,et al.  NONLINEAR FEEDBACK CONTROL OF PARABOLIC PDE SYSTEMS , 1998 .

[17]  Denis Dochain,et al.  Dynamical analysis of distributed parameter tubular reactors , 2000, Autom..