A Meta-Heuristic Model for Data Classification Using Target Optimization

37 Machine Learning for Texture Segmentation and Classification of Comic Image in SVG Compression; Ray-I Chang, Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan Chung-Yuan Su, Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan Tsung-Han Lin, Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan

[1]  A. Rezaee Jordehi,et al.  Enhanced leader PSO (ELPSO): A new PSO variant for solving global optimisation problems , 2015, Appl. Soft Comput..

[2]  Ahmad Reza Naghsh-Nilchi,et al.  Chaotic Particle Swarm Optimization with Mutation for Classification , 2015, Journal of medical signals and sensors.

[3]  Hossein Nezamabadi-pour,et al.  Disruption: A new operator in gravitational search algorithm , 2011, Sci. Iran..

[4]  Xueli An,et al.  A chaos embedded GSA-SVM hybrid system for classification , 2014, Neural Computing and Applications.

[5]  M. A. Behrang,et al.  A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation , 2011 .

[6]  Alper Ekrem Murat,et al.  A discrete particle swarm optimization method for feature selection in binary classification problems , 2010, Eur. J. Oper. Res..

[7]  Bo Yang,et al.  Data gravitation based classification , 2009, Inf. Sci..

[8]  Mohammadreza Meybodi,et al.  A modified Gravitational Search Algorithm and its application , 2015, 2015 7th Conference on Information and Knowledge Technology (IKT).

[9]  Rachita Misra,et al.  An ANN Model to Classify Multinomial Datasets with Optimized Target Using Particle Swarm Optimization Technique , 2015 .

[10]  Himansu Sekhar Behera,et al.  A Novel FLANN with a Hybrid PSO and GA Based Gradient Descent Learning for Classification , 2014, FICTA.

[11]  Sung-Bae Cho,et al.  Multi-criterion Pareto based particle swarm optimized polynomial neural network for classification: A review and state-of-the-art , 2009, Comput. Sci. Rev..

[12]  Sung-Bae Cho,et al.  An improved swarm optimized functional link artificial neural network (ISO-FLANN) for classification , 2012, J. Syst. Softw..

[13]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[14]  Hossein Nezamabadi-pour,et al.  Facing the classification of binary problems with a GSA-SVM hybrid system , 2013, Math. Comput. Model..

[15]  A. Rezaee Jordehi,et al.  Parameter selection in particle swarm optimisation: a survey , 2013, J. Exp. Theor. Artif. Intell..

[16]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[17]  Moncef Gabbouj,et al.  Evaluation of Global and Local Training Techniques over Feed-forward Neural Network Architecture Spaces for Computer-aided Medical Diagnosis , 2022 .

[18]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  Chee Peng Lim,et al.  Evolving an Adaptive Artificial Neural Network with a Gravitational Search Algorithm , 2015, KES-IDT.

[20]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[21]  Bijaya K. Panigrahi,et al.  Exploratory Power of the Harmony Search Algorithm: Analysis and Improvements for Global Numerical Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  A. Rezaee Jordehi,et al.  Particle swarm optimisation for discrete optimisation problems: a review , 2012, Artificial Intelligence Review.

[23]  Hossein Nezamabadi-pour,et al.  A prototype classifier based on gravitational search algorithm , 2012, Appl. Soft Comput..

[24]  Gadadhar Sahoo,et al.  A Review on Gravitational Search Algorithm and its Applications to Data Clustering & Classification , 2014 .

[25]  Ajith Abraham,et al.  Particle Swarm Optimization Based Higher Order Neural Network for Classification , 2015 .