Semi-Supervised Learning

[1]  Achi Brandt,et al.  Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver , 2011, SIAM J. Sci. Comput..

[2]  Mikhail Belkin,et al.  Semi-supervised Learning by Higher Order Regularization , 2011, AISTATS.

[3]  Nathan Srebro,et al.  Error Analysis of Laplacian Eigenmaps for Semi-supervised Learning , 2011, AISTATS.

[4]  Mikhail Belkin,et al.  Behavior of Graph Laplacians on Manifolds with Boundary , 2011, ArXiv.

[5]  Shirish Tatikonda,et al.  SystemML: Declarative machine learning on MapReduce , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[6]  A. Owen,et al.  Empirical stationary correlations for semi-supervised learning on graphs , 2010, 1011.1766.

[7]  Slav Petrov,et al.  Efficient Graph-Based Semi-Supervised Learning of Structured Tagging Models , 2010, EMNLP.

[8]  Ronald R. Coifman,et al.  Multiscale Wavelets on Trees, Graphs and High Dimensional Data: Theory and Applications to Semi Supervised Learning , 2010, ICML.

[9]  Maria-Florina Balcan,et al.  A discriminative model for semi-supervised learning , 2010, J. ACM.

[10]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[11]  Antonio Torralba,et al.  Semi-Supervised Learning in Gigantic Image Collections , 2009, NIPS.

[12]  Jeff A. Bilmes,et al.  Entropic Graph Regularization in Non-Parametric Semi-Supervised Classification , 2009, NIPS.

[13]  Xiaojin Zhu,et al.  Introduction to Semi-Supervised Learning , 2009, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[14]  Thorsten Joachims,et al.  Learning structural SVMs with latent variables , 2009, ICML '09.

[15]  Ilya Safro,et al.  Multilevel algorithms for linear ordering problems , 2009, JEAL.

[16]  Jun Zhu,et al.  Maximum Entropy Discrimination Markov Networks , 2009, J. Mach. Learn. Res..

[17]  Ming Li,et al.  Online Manifold Regularization: A New Learning Setting and Empirical Study , 2008, ECML/PKDD.

[18]  Trevor Darrell,et al.  Multi-View Learning in the Presence of View Disagreement , 2008, UAI 2008.

[19]  Vikas Sindhwani,et al.  An RKHS for multi-view learning and manifold co-regularization , 2008, ICML '08.

[20]  Jason Weston,et al.  Large scale manifold transduction , 2008, ICML '08.

[21]  Ameet Talwalkar,et al.  Large-scale manifold learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  S. Sathiya Keerthi,et al.  Optimization Techniques for Semi-Supervised Support Vector Machines , 2008, J. Mach. Learn. Res..

[23]  Ulf Brefeld Semi-supervised structured prediction models , 2008 .

[24]  Larry A. Wasserman,et al.  Statistical Analysis of Semi-Supervised Regression , 2007, NIPS.

[25]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[26]  Vincent Ng,et al.  Book Reviews: Semisupervised Learning for Computational Linguistics by Steven Abney , 2007, CL.

[27]  Gökhan BakIr,et al.  Predicting Structured Data , 2008 .

[28]  P. Bickel,et al.  Local polynomial regression on unknown manifolds , 2007, 0708.0983.

[29]  Sham M. Kakade,et al.  Multi-view Regression Via Canonical Correlation Analysis , 2007, COLT.

[30]  S. Sathiya Keerthi,et al.  Branch and Bound for Semi-Supervised Support Vector Machines , 2006, NIPS.

[31]  Ben Taskar,et al.  Structured Prediction, Dual Extragradient and Bregman Projections , 2006, J. Mach. Learn. Res..

[32]  Jason Weston,et al.  Large Scale Transductive SVMs , 2006, J. Mach. Learn. Res..

[33]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[34]  O. Chapelle,et al.  Semi-Supervised Learning , 2006 .

[35]  Ulrike von Luxburg,et al.  Graph Laplacians and their Convergence on Random Neighborhood Graphs , 2006, J. Mach. Learn. Res..

[36]  S. Sathiya Keerthi,et al.  Large scale semi-supervised linear SVMs , 2006, SIGIR.

[37]  Dale Schuurmans,et al.  Semi-Supervised Conditional Random Fields for Improved Sequence Segmentation and Labeling , 2006, ACL.

[38]  Ulf Brefeld,et al.  Semi-supervised learning for structured output variables , 2006, ICML.

[39]  Philippe Rigollet,et al.  Generalization Error Bounds in Semi-supervised Classification Under the Cluster Assumption , 2006, J. Mach. Learn. Res..

[40]  Mikhail Belkin,et al.  Maximum Margin Semi-Supervised Learning for Structured Variables , 2005, NIPS 2005.

[41]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[42]  Maria-Florina Balcan,et al.  A PAC-Style Model for Learning from Labeled and Unlabeled Data , 2005, COLT.

[43]  Mikhail Belkin,et al.  Regularization and Semi-supervised Learning on Large Graphs , 2004, COLT.

[44]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[45]  Matthias Hein,et al.  Measure Based Regularization , 2003, NIPS.

[46]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[47]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[48]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[49]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[50]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[51]  Avrim Blum,et al.  Learning from Labeled and Unlabeled Data using Graph Mincuts , 2001, ICML.

[52]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[53]  Tommi S. Jaakkola,et al.  Partially labeled classification with Markov random walks , 2001, NIPS.

[54]  Tom Michael Mitchell,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[55]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[56]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[57]  B. Reddy,et al.  Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements , 1997 .

[58]  F. Chung Spectral Graph Theory , 1996 .

[59]  Vittorio Castelli,et al.  The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter , 1996, IEEE Trans. Inf. Theory.

[60]  Santosh S. Venkatesh,et al.  Learning from a mixture of labeled and unlabeled examples with parametric side information , 1995, COLT '95.

[61]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[62]  Vittorio Castelli,et al.  On the exponential value of labeled samples , 1995, Pattern Recognit. Lett..

[63]  G. Wahba Spline Models for Observational Data , 1990 .

[64]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[65]  Partha Niyogi,et al.  Manifold regularization and semi-supervised learning: some theoretical analyses , 2013, J. Mach. Learn. Res..

[66]  S. Vijayakumar,et al.  Learning from Labeled and Unlabeled Data , 2010, Encyclopedia of Machine Learning.

[67]  Nathan Srebro,et al.  Statistical Analysis of Semi-Supervised Learning: The Limit of Infinite Unlabelled Data , 2009, NIPS.

[68]  M. Griebel,et al.  Semi-supervised learning with sparse grids , 2005, ICML 2005.

[69]  Alexander Zien,et al.  Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.

[70]  Mikhail Belkin,et al.  A Co-Regularization Approach to Semi-supervised Learning with Multiple Views , 2005 .

[71]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[72]  Xiaojin Zhu,et al.  Kernel conditional random fields: representation and clique selection , 2004, ICML.

[73]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[74]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[75]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[76]  Jianbo Shi,et al.  Learning Segmentation by Random Walks , 2000, NIPS.

[77]  Yoram Singer,et al.  Unsupervised Models for Named Entity Classification , 1999, EMNLP.

[78]  Vladimir Cherkassky,et al.  Statistical learning theory , 1998 .

[79]  J. Bilmes A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .