AN INTRODUCTION TO QUANTITATIVE POINCARÉ RECURRENCE IN DYNAMICAL SYSTEMS

We present some recurrence results in the context of ergodic theory and dynamical systems. The main focus will be on smooth dynamical systems, in particular, those with some chaotic/hyperbolic behavior. The aim is to compute recurrence rates, limiting distributions of return times, and short returns. We choose to give the full proofs of the results directly related to recurrence, avoiding as much as possible to hide the ideas behind technical details. This drove us to consider as our basic dynamical system a one-dimensional expanding map of the interval. We note, however, that most of the arguments still apply to higher dimensional or less uniform situations, so that most of the statements continue to hold. Some basic notions from the thermodynamic formalism and the dimension theory of dynamical systems will be recalled.

[1]  Y. Pesin,et al.  Dimension theory in dynamical systems , 1997 .

[2]  B. A. Sevast'yanov,et al.  Poisson Limit Law for a Scheme of Sums of Dependent Random Variables , 1973 .

[3]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[4]  Benjamin Weiss,et al.  Entropy and data compression schemes , 1993, IEEE Trans. Inf. Theory.

[5]  F. Hofbauer The recurrence dimension for piecewise monotonic maps of the interval , 2005 .

[6]  N. Haydn Statistical properties of equilibrium states for rational maps , 2000, Ergodic Theory and Dynamical Systems.

[7]  M. Urbanski Recurrence rates for loosely Markov dynamical systems , 2007, Journal of the Australian Mathematical Society.

[8]  Antonio Galves,et al.  Inequalities for the occurrence times of rare events in mixing processes. The state of the art , 2000 .

[9]  M. Boshernitzan,et al.  Quantitative recurrence results , 1993 .

[10]  Z. Coelho ASYMPTOTIC LAWS FOR SYMBOLIC DYNAMICAL SYSTEMS , 2005 .

[11]  Anthony Quas,et al.  AN ENTROPY ESTIMATOR FOR A CLASS OF INFINITE ALPHABET PROCESSES , 1999 .

[12]  Pierre Collet,et al.  Repetition times for Gibbsian sources , 1999 .

[13]  Pierre Collet,et al.  Statistics of closest return for some non-uniformly hyperbolic systems , 1999, Ergodic Theory and Dynamical Systems.

[14]  S. Vaienti,et al.  Return time statistics for unimodal maps , 2003 .

[15]  A Poisson limit theorem for toral automorphisms , 2004 .

[16]  Sandro Vaienti,et al.  Statistics of Return Times:¶A General Framework and New Applications , 1999 .

[17]  M. Hirata,et al.  Poisson law for Axiom A diffeomorphisms , 1993, Ergodic Theory and Dynamical Systems.

[18]  Pierre Collet,et al.  Unpredictability of the occurrence time of a long laminar period in a model of temporal intermittency , 1992 .

[19]  Sandro Vaienti,et al.  Multifractal properties of return time statistics. , 2001, Physical review letters.

[20]  S. Galatolo Hitting Time and Dimension in Axiom A Systems, Generic Interval Exchanges and an Application to Birkoff Sums , 2006 .

[21]  W. Parry,et al.  Zeta functions and the periodic orbit structure of hyperbolic dynamics , 1990 .

[22]  M. Kac On the notion of recurrence in discrete stochastic processes , 1947 .

[23]  H. Crauel EQUILIBRIUM STATES IN ERGODIC THEORY (London Mathematical Society Student Texts 42) By G ERHARD K ELLER : 178 pp., £16.95 (LMS members' price £12.71), ISBN 0-521-59534-7 (Cambridge University Press, 1998). , 2001 .

[24]  Yakov Pesin,et al.  Dimension and product structure of hyperbolic measures , 1999 .

[25]  G. Keller Equilibrium States in Ergodic Theory , 1998 .

[26]  S. Galatolo,et al.  The recurrence time for ergodic systems with infinite invariant measures , 2006, math/0601672.

[27]  J. Chazottes,et al.  On pointwise dimensions and spectra of measures , 2001 .

[28]  X. Bressaud,et al.  Non Exponential Law of Entrance Times in Asymptotically Rare Events for Intermittent Maps with Infinite Invariant Measure , 2001 .

[29]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[30]  Valentin Afraimovich,et al.  Pointwise dimensions for Poincaré recurrences associated with maps and special flows , 2002 .

[31]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[32]  Return time statistics via inducing , 2000, Ergodic Theory and Dynamical Systems.

[33]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[34]  B. Saussol,et al.  Recurrence and lyapunov exponents , 2002 .

[35]  S. Troubetzkoy,et al.  Recurrence, Dimensions, and Lyapunov Exponents , 2001 .

[36]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[37]  Antonio Galves,et al.  Inequalities For Hitting Times In Mixing Dynamical Systems , 1997 .

[38]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[39]  G. Birkhoff Proof of a Recurrence Theorem for Strongly Transitive Systems. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[40]  The Hausdorff dimension of recurrent sets in symbolic spaces , 2001 .

[41]  Stefano Luzzatto,et al.  Chapter 3 – Stochastic-Like Behaviour in Nonuniformly Expanding Maps , 2004, math/0409085.

[42]  S. Galatolo Dimension and hitting time in rapidly mixing systems , 2006 .

[43]  B. Pitskel,et al.  Poisson limit law for Markov chains , 1991, Ergodic Theory and Dynamical Systems.

[44]  V. Afraimovich,et al.  Pesin's dimension for Poincare recurrences. , 1997, Chaos.

[45]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[46]  B. Saussol RECURRENCE RATE IN RAPIDLY MIXING DYNAMICAL SYSTEMS , 2004, math/0412211.

[47]  L. Barreira,et al.  Product structure of Poincaré recurrence , 2002, Ergodic Theory and Dynamical Systems.

[48]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part II: Relations between entropy, exponents and dimension , 1985 .

[49]  Dmitry Dolgopyat,et al.  Limit theorems for partially hyperbolic systems , 2003 .

[50]  N. Haydn,et al.  Hitting and return times in ergodic dynamical systems , 2004, math/0410384.

[51]  Sandro Vaienti,et al.  Dimensions for recurrence times: topological and dynamical properties , 1999 .

[52]  Y. Lacroix Possible limit laws for entrance times of an ergodic aperiodic dynamical system , 2002 .

[53]  Luis Barreira,et al.  Hausdorff Dimension of Measures¶via Poincaré Recurrence , 2001 .

[54]  Edgardo Ugalde,et al.  Spectrum of dimensions for Poincaré recurrences of Markov maps , 2002 .

[55]  On fluctuations and the exponential statistics of return times , 2001 .

[56]  Jun Wu,et al.  Recurrence spectrum in smooth dynamical systems , 2003, math/0303363.

[57]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[58]  Ravi P. Agarwal,et al.  Dynamical systems and applications , 1995 .