Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance

[1]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[2]  A. Goodman,et al.  Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer. , 2013, Journal of colloid and interface science.

[3]  F. Kapteijn,et al.  Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential , 2013 .

[4]  F. Kapteijn,et al.  Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives , 2012 .

[5]  M. Guiver,et al.  Advances in high permeability polymeric membrane materials for CO2 separations , 2012 .

[6]  Freek Kapteijn,et al.  Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid – Characterization and catalytic performance , 2012 .

[7]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[8]  F. Kapteijn,et al.  Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering. , 2011, Angewandte Chemie.

[9]  J. Caro,et al.  Are MOF membranes better in gas separation than those made of zeolites , 2011 .

[10]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[11]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[12]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[13]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[14]  J. Klinowski,et al.  Microwave-assisted synthesis of metal-organic frameworks. , 2011, Dalton transactions.

[15]  F. Kapteijn,et al.  A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.

[16]  William J. Koros,et al.  Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication. , 2009, Journal of the American Chemical Society.

[17]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[18]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[19]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[20]  Roda Bounaceur,et al.  Biogas, membranes and carbon dioxide capture , 2009 .

[21]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[22]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[23]  Sukumar Devotta,et al.  Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures , 2007 .

[24]  A. Corma,et al.  MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF , 2007 .

[25]  Krista S. Walton,et al.  Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[26]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[27]  C. Serre,et al.  Microwave Synthesis of Chromium Terephthalate MIL‐101 and Its Benzene Sorption Ability , 2007 .

[28]  R. Masel,et al.  Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. , 2006, Journal of the American Chemical Society.

[29]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[30]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[31]  William J. Koros,et al.  Evolving beyond the thermal age of separation processes: Membranes can lead the way , 2004 .

[32]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[33]  R. Mahajan,et al.  Challenges in forming successful mixed matrix membranes with rigid polymeric materials , 2002 .

[34]  Robert Hull,et al.  Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy , 1999 .

[35]  Matthias Wessling,et al.  CO2-induced plasticization phenomena in glassy polymers , 1999 .

[36]  A. A. Friedman,et al.  Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant , 1998 .

[37]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .