Observer Design for Chaos Synchronization of Time-delayed Power Systems

The global chaos synchronization for a class of time-delayed power systems is investigated via observer-based approach. By employing the concepts of quadratic stability theory and generalized system model, a new sufficient criterion for constructing an observer is deduced. In contrast to the previous works, this paper proposes a theoretical and systematic design procedure to realize chaos synchronization for master-slave power systems. Finally, an illustrative example is given to show the applicability of the obtained scheme. Keywords—Chaos; Synchronization; Quadratic stability theory; Observer

[1]  Xinghuo Yu,et al.  Chaos Synchronization via Controlling Partial State of Chaotic Systems , 2001, Int. J. Bifurc. Chaos.

[2]  Paul Woafo,et al.  Effects of higher nonlinearity on the dynamics and synchronization of two coupled electromechanical devices , 2008 .

[3]  Donghua Zhou,et al.  A new observer-based synchronization scheme for private communication , 2005 .

[4]  P. Varaiya,et al.  Nonlinear oscillations in power systems , 1984 .

[5]  Qidi Wu,et al.  Impulsive control for the stabilization and synchronization of Lorenz systems , 2002 .

[6]  Guanrong Chen,et al.  Effective chaotic orbit tracker: a prediction-based digital redesign approach , 2000 .

[7]  Maamar Bettayeb,et al.  A sliding mode control for linear fractional systems with input and state delays , 2009 .

[8]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[9]  S. Bowong Adaptive synchronization between two different chaotic dynamical systems , 2007 .

[10]  Jianping Cai,et al.  Robust synchronization of chaotic horizontal platform systems with phase difference , 2007 .

[11]  José Manoel Balthazar,et al.  A simple feedback control for a chaotic oscillator with limited power supply , 2007 .

[12]  E. M. Shahverdiev,et al.  Chaos synchronization in some power systems , 2008 .

[13]  Her-Terng Yau,et al.  Fuzzy Sliding Mode Control for a Class of Chaos Synchronization with Uncertainties , 2006 .

[14]  H. Salarieh,et al.  Adaptive synchronization of two chaotic systems with stochastic unknown parameters , 2009 .

[15]  Necati Özdemir,et al.  State-space solutions to standard H? control problem , 2002 .

[16]  Jun-Juh Yan,et al.  Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters , 2006 .

[17]  José Manoel Balthazar,et al.  On control and synchronization in chaotic and hyperchaotic systems via linear feedback control , 2008 .

[18]  Tzuyin Wu,et al.  Chaos control of the modified Chua's circuit system , 2002 .

[19]  N. Kopell,et al.  Chaotic motions in the two-degree-of-freedom swing equations , 1982 .

[20]  Xinghuo Yu,et al.  Stabilizing unstable periodic orbits of chaotic systems via an optimal principle , 2000, J. Frankl. Inst..

[21]  S. Żak,et al.  On stability independent of delay for linear systems , 1982 .

[22]  Juebang Yu,et al.  Chaos synchronization using single variable feedback based on backstepping method , 2004 .

[23]  Hsien-Keng Chen,et al.  Dynamic analysis, controlling chaos and chaotification of a SMIB power system , 2005 .

[24]  Liu Guo-gang Impulsive Control and Synchronization of Unified Chaotic System , 2006 .