Logique, Réalisabilité et Concurrence

Cette these se consacre a l'application de techniques de realisabilite dans le cadre de l'etude du sens calculatoire de la logique. Dans une premiere partie, nous rappelons le formalisme de la realisabilite classique de Krivine, dans lequel nous menons ensuite une etude du contenu operationnel de tautologies purement classiques. Cette exploration du sens calculatoire de la disjonction classique revele des comportements riches, avec une forte intuition interactive, qui s'interpretent avantageusement comme des structures de controle typees. Afin de mieux comprendre la nature de ces mecanismes, nous definissons ensuite une technique de realisabilite a la Krivine pour un modele de calcul concurrent, dans le but d'obtenir une notion de constructivite qui ne soit plus fondee sur l'idee de fonction, mais sur celle de processus interactif. Le cadre ainsi obtenu donne une interpretation reellement concurrente de la logique lineaire dans un calcul de processus derive du pi-calcul, permettant d'appliquer au cas concurrent la methode de specification precedemment etudiee dans le cas sequentiel. Par la suite, l'etude des traductions de la logique classique vers la logique lineaire mene a reconstruire systematiquement des decompositions interactives du calcul fonctionnel, permettant ainsi de faire le lien au niveau logique entre les realisabilites classique et concurrente. Dans une derniere partie, nous etudions plus en detail le mode de calcul issu des algebres de processus, afin de comprendre son systeme d'ordonnancement. Cette etude mene a la definition d'un modele de calcul plus geometrique qui permet une exploration formelle de la notion de causalite dans les calculs concurrents.

[1]  Jean-Louis Krivine,et al.  Dependent choice, 'quote' and the clock , 2003, Theor. Comput. Sci..

[2]  Emmanuel Beffara,et al.  Concurrent Nets: A Study of Prefixing in Process Calculi , 2005, EXPRESS.

[3]  Vincent Danos,et al.  A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.

[4]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[5]  Philippa Gardner,et al.  Explicit fusions , 2000, Theor. Comput. Sci..

[6]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[7]  Nobuko Yoshida,et al.  On Reduction-Based Process Semantics , 1995, Theor. Comput. Sci..

[8]  Rocco De Nicola,et al.  Testing Equivalence for Processes , 1983, ICALP.

[9]  Matthias Felleisen,et al.  A Syntactic Theory of Sequential Control , 1987, Theor. Comput. Sci..

[10]  Thomas Ehrhard,et al.  Differential Interaction Nets , 2005, WoLLIC.

[11]  Cosimo Laneve,et al.  Solos in Concert , 1999, ICALP.

[12]  Andrea Asperti,et al.  Yet Another Correctness Criterion for Multiplicative Linear Logic with MIX , 1994, LFCS.

[13]  Vincent Danos,et al.  Game semantics and abstract machines , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[14]  Yuxi Fu A Proof Theoretical Approach to Communication , 1997, ICALP.

[15]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[16]  Luca Cardelli,et al.  A Spatial Logic for Concurrency (Part II) , 2002, CONCUR.

[17]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[18]  Björn Victor,et al.  The fusion calculus: expressiveness and symmetry in mobile processes , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[19]  Robin Milner,et al.  Functions as processes , 1990, Mathematical Structures in Computer Science.

[20]  Mads Dam,et al.  Process-Algebraic Interpretations of Positive Linear and Relevant Logics , 1994, J. Log. Comput..

[21]  John McCarthy,et al.  A basis for a mathematical theory of computation, preliminary report , 1899, IRE-AIEE-ACM '61 (Western).

[22]  C.-H. Luke Ong,et al.  Pi-Calculus, Dialogue Games and PCF. , 1995 .

[23]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[24]  Robin Milner,et al.  Bigraphs and transitions , 2003, POPL '03.

[25]  Vincent Danos,et al.  Disjunctive Tautologies as Synchronisation Schemes , 2000, CSL.

[26]  Davide Sangiorgi,et al.  An Investigation into Functions as Processes , 1993, MFPS.

[27]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .

[28]  Wolfgang Reisig,et al.  Petri Nets: Applications and Relationships to Other Models of Concurrency , 1986, Lecture Notes in Computer Science.

[29]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 1994, Inf. Comput..

[30]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[31]  Vincent Danos,et al.  LKQ and LKT: sequent calculi for second order logic based upon dual linear decompositions of classical implication , 1995 .

[32]  Vincent Danos,et al.  Disjunctive normal forms and local exceptions , 2003, ICFP '03.

[33]  Jean-Louis Krivine A general storage theorem for integers in call-byname & calculus , 1993 .

[34]  Joachim Parrow,et al.  Trios in concert , 2000, Proof, Language, and Interaction.

[35]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[36]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[37]  Cosimo Laneve,et al.  Solo Diagrams , 2001, TACS.

[38]  Yves Lafont,et al.  Interaction nets , 1989, POPL '90.

[39]  D. Sangiorgi - calculus , internal mobility , and agent-passing calculi , 1995 .

[40]  Gérard Berry,et al.  The chemical abstract machine , 1989, POPL '90.

[41]  C.-H. Luke Ong,et al.  A Curry-Howard foundation for functional computation with control , 1997, POPL '97.

[42]  C. K. R. T. Jones,et al.  The ϱ-Calculus , 1981, Math. Log. Q..

[43]  Michele Boreale,et al.  On the Expressiveness of Internal Mobility in Name-Passing Calculi , 1996, Theor. Comput. Sci..

[44]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[45]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.

[46]  J. Girard,et al.  Proofs and types , 1989 .

[47]  J. Girard PROOF-NETS : THE PARALLEL SYNTAX FOR PROOF-THEORY , 1996 .

[48]  Robin Milner,et al.  Modal Logics for Mobile Processes , 1991, Theor. Comput. Sci..

[49]  Yves Lafont Interaction Combinators , 1997, Inf. Comput..

[50]  Cosimo Laneve,et al.  Linear forwarders , 2007, Inf. Comput..

[51]  Samson Abramsky,et al.  Interaction Categories , 1993, Theory and Formal Methods.

[52]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[53]  Sequentiality and the π-Calculus , 2001 .

[54]  Cédric Fournet,et al.  The reflexive CHAM and the join-calculus , 1996, POPL '96.

[55]  Christian Retoré,et al.  The mix rule , 1994, Mathematical Structures in Computer Science.

[56]  Emmanuel Beffara,et al.  A Concurrent Model for Linear Logic , 2006, MFPS.

[57]  Robin Milner Pi-Nets: A Graphical Form of pi-Calculus , 1994, ESOP.

[58]  Cosimo Laneve,et al.  The discriminating power of multiplicities in the-calculus , 1996 .

[59]  Rocco De Nicola,et al.  Testing Equivalence for Mobile Processes , 1995, Inf. Comput..