Minimum Trace Norm Regularization (MTNR) in Electromagnetic Inverse Problems

This paper discusses a method to regularize linear problems in presence of incomplete and noisy data generated by partially or totally unknown sources. The idea is to identify the “simplest” solution, looking for the system having the minimum number of degrees of freedom (NDF) compatible with the available data. It is shown that a normalized version of the trace norm (known as 1-Schatten norm in functional analysis) is a good convex approximation of the NDF of the field. This allows to use the trace norm as a convex surrogate of the NDF in the minimization process, taking advantage of the recent literature on rank minimization. Examples regarding MIMO beamforming from incomplete channel matrix, field interpolation with no a priori information on the sources, and land-mine identification using the total field are discussed.

[1]  Simon Haykin,et al.  Multiple-Input Multiple-Output Channel Models: Theory and Practice , 2010 .

[2]  Jinhwan Koh,et al.  Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival , 2006, IEEE Transactions on Antennas and Propagation.

[3]  Michael Unser,et al.  Poisson Image Reconstruction With Hessian Schatten-Norm Regularization , 2013, IEEE Transactions on Image Processing.

[4]  Paolo Rocca,et al.  Compressive Sensing in Electromagnetics - A Review , 2015, IEEE Antennas and Propagation Magazine.

[5]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[6]  M.A. Jensen,et al.  A review of antennas and propagation for MIMO wireless communications , 2004, IEEE Transactions on Antennas and Propagation.

[7]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[8]  Massimo Franceschetti,et al.  The Information Carried by Scattered Waves: Near-Field and Nonasymptotic Regimes , 2015, IEEE Transactions on Antennas and Propagation.

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[11]  G. Franceschetti,et al.  On the degrees of freedom of scattered fields , 1989 .

[12]  Andrea Massa,et al.  Multiresolution subspace-based optimization method for inverse scattering problems. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Israel Gohberg,et al.  Traces and determinants of linear operators , 1996 .

[14]  M. Bertero Linear Inverse and III-Posed Problems , 1989 .

[15]  M.D. Migliore MIMO Antennas Explained Using the Woodward-Lawson Synthesis Method [Wireless Corner] , 2007, IEEE Antennas and Propagation Magazine.

[16]  D. S. Jones,et al.  Methods in electromagnetic wave propagation , 1979 .

[17]  E. Hille,et al.  On the characteristic values of linear integral equations , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  Paolo Rocca,et al.  A Bayesian-Compressive-Sampling-Based Inversion for Imaging Sparse Scatterers , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[20]  M.A. Jensen,et al.  Time-Varying MIMO Channels: Measurement, Analysis, and Modeling , 2006, IEEE Transactions on Antennas and Propagation.

[21]  Marco Donald Migliore A simple introduction to compressed sensing/sparse recovery with applications in antenna measurements , 2014, IEEE Antennas and Propagation Magazine.

[22]  S. Osher,et al.  Seismic data reconstruction via matrix completion , 2013 .

[23]  M. Migliore,et al.  On Electromagnetics and Information Theory , 2008, IEEE Transactions on Antennas and Propagation.

[24]  E. Davies,et al.  Linear Operators and their Spectra , 2007 .

[25]  M.D. Migliore An intuitive electromagnetic approach to MIMO communication systems [Wireless Corner] , 2006, IEEE Antennas and Propagation Magazine.

[26]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[27]  W. Marsden I and J , 2012 .

[28]  Tai Tsun Wu,et al.  Lateral electromagnetic waves , 1992 .

[29]  Paolo Rocca,et al.  Bayesian Compressive Sensing Approaches for the Reconstruction of Two-Dimensional Sparse Scatterers Under TE Illuminations , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Robert W. Heath,et al.  Blind Channel Estimation for MIMO-OFDM Systems , 2007, IEEE Transactions on Vehicular Technology.

[31]  Hassan Mansour,et al.  Efficient matrix completion for seismic data reconstruction , 2015 .

[32]  A. Devaney,et al.  Nonuniqueness in inverse source and scattering problems , 1982 .

[33]  Richard W. Ziolkowski,et al.  Nonradiating and minimum energy sources and their fields: generalized source inversion theory and applications , 2000 .

[34]  Zhang Liu,et al.  Nuclear norm system identification with missing inputs and outputs , 2013, Syst. Control. Lett..

[35]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[36]  Michael Unser,et al.  Hessian Schatten-Norm Regularization for Linear Inverse Problems , 2012, IEEE Transactions on Image Processing.

[37]  Victor Vianu,et al.  Invited articles section foreword , 2010, JACM.

[38]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[39]  J. Bladel,et al.  Electromagnetic Fields , 1985 .

[40]  Andrea Massa,et al.  Multi-resolution subspace-based optimization method for solving three-dimensional inverse scattering problems. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[41]  M. Migliore On the role of the number of degrees of freedom of the field in MIMO channels , 2006, IEEE Transactions on Antennas and Propagation.

[42]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[43]  O. Bucci,et al.  A New Method for Avoiding the Truncation Error in Near-Field Antennas Measurements , 2006, IEEE Transactions on Antennas and Propagation.

[44]  M. Migliore On the Sampling of the Electromagnetic Field Radiated by Sparse Sources , 2015, IEEE Transactions on Antennas and Propagation.

[45]  O. Bucci,et al.  Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples , 1998 .