Arbitrarily high-order linear energy stable schemes for gradient flow models

We present a paradigm for developing arbitrarily high order, linear, unconditionally energy stable numerical algorithms for gradient flow models. We apply the energy quadratization (EQ) technique to reformulate the general gradient flow model into an equivalent gradient flow model with a quadratic free energy and a modified mobility. Given solutions up to $t_n=n \Delta t$ with $\Delta t$ the time step size, we linearize the EQ-reformulated gradient flow model in $(t_n, t_{n+1}]$ by extrapolation. Then we employ an algebraically stable Runge-Kutta method to discretize the linearized model in $(t_n, t_{n+1}]$. Then we use the Fourier pseudo-spectral method for the spatial discretization to match the order of accuracy in time. The resulting fully discrete scheme is linear, unconditionally energy stable, uniquely solvable, and may reach arbitrarily high order. Furthermore, we present a family of linear schemes based on prediction-correction methods to complement the new linear schemes. Some benchmark numerical examples are given to demonstrate the accuracy and efficiency of the schemes.

[1]  Xiaoli Li,et al.  Efficient modified techniques of invariant energy quadratization approach for gradient flows , 2019, Appl. Math. Lett..

[2]  Amanda E. Diegel,et al.  Stability and Convergence of a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation , 2014, 1411.5248.

[3]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[4]  Xingde Ye,et al.  The Legendre collocation method for the Cahn-Hilliard equation , 2003 .

[5]  Wenqiang Feng,et al.  An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation , 2017, J. Comput. Appl. Math..

[6]  Cheng Wang,et al.  A Second Order Energy Stable Linear Scheme for a Thin Film Model Without Slope Selection , 2018, J. Sci. Comput..

[7]  Jaemin Shin,et al.  Unconditionally stable methods for gradient flow using Convex Splitting Runge-Kutta scheme , 2017, J. Comput. Phys..

[8]  Clarke,et al.  Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: A computational modeling approach. , 1987, Physical review letters.

[9]  D. Furihata,et al.  Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations , 2010 .

[10]  Ming-Chih Lai,et al.  An Unconditionally Energy Stable Immersed Boundary Method with Application to Vesicle Dynamics , 2013 .

[11]  Daisuke Furihata,et al.  Discrete Variational Derivative Method , 2010 .

[12]  Ping Lin,et al.  Mass conservative and energy stable finite difference methods for the quasi-incompressible Navier–Stokes–Cahn–Hilliard system: Primitive variable and projection-type schemes , 2017, 1703.06606.

[13]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[14]  J. Cahn,et al.  A Microscopic Theory for Domain Wall Motion and Its Experimental Verification in Fe‐Al Alloy Domain Growth Kinetics , 1977 .

[15]  Jia Zhao,et al.  Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method , 2017, J. Comput. Phys..

[16]  Lili Ju,et al.  Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model , 2017 .

[17]  Cheng Wang,et al.  A Second-Order Energy Stable BDF Numerical Scheme for the Cahn-Hilliard Equation , 2018 .

[18]  Suchuan Dong,et al.  A family of second-order energy-stable schemes for Cahn-Hilliard type equations , 2019, J. Comput. Phys..

[19]  Cheng Wang,et al.  A second‐order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection , 2017, 1706.01943.

[20]  Jaemin Shin,et al.  Convex Splitting Runge-Kutta methods for phase-field models , 2017, Comput. Math. Appl..

[21]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[22]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[23]  Steven M. Wise,et al.  Unconditionally stable schemes for equations of thin film epitaxy , 2010 .

[24]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[25]  Harald Garcke,et al.  On Fully Practical Finite Element Approximations of Degenerate Cahn-Hilliard Systems , 2001 .

[26]  Jie Shen,et al.  Stabilized Predictor-Corrector Schemes for Gradient Flows with Strong Anisotropic Free Energy , 2018 .

[27]  Jie Shen,et al.  A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows , 2017, SIAM Rev..

[28]  Cheng Wang,et al.  A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2012, J. Sci. Comput..

[29]  K. Burrage,et al.  Stability Criteria for Implicit Runge–Kutta Methods , 1979 .

[30]  Hehu Xie,et al.  Adaptive time-stepping algorithms for molecular beam epitaxy: Based on energy or roughness , 2020, Appl. Math. Lett..

[31]  Hui Zhang,et al.  Efficient and linear schemes for anisotropic Cahn-Hilliard model using the Stabilized-Invariant Energy Quadratization (S-IEQ) approach , 2019, Comput. Phys. Commun..

[32]  Cheng Wang,et al.  An $H^2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation , 2016 .

[33]  Tao Tang,et al.  An Adaptive Time-Stepping Strategy for the Molecular Beam Epitaxy Models , 2011, SIAM J. Sci. Comput..

[34]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[35]  Junseok Kim,et al.  CONSERVATIVE MULTIGRID METHODS FOR TERNARY CAHN-HILLIARD SYSTEMS ∗ , 2004 .

[36]  Xiaofeng Yang,et al.  Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends , 2016, J. Comput. Phys..

[37]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[38]  Zhonghua Qiao,et al.  A Third Order Exponential Time Differencing Numerical Scheme for No-Slope-Selection Epitaxial Thin Film Model with Energy Stability , 2019, Journal of Scientific Computing.

[39]  Cheng Wang,et al.  A Second-Order, Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn–Hilliard Equation and Its Solution by the Homogeneous Linear Iteration Method , 2016, J. Sci. Comput..

[40]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[41]  Buyang Li,et al.  Energy-Decaying Extrapolated RK-SAV Methods for the Allen-Cahn and Cahn-Hilliard Equations , 2019, SIAM J. Sci. Comput..

[42]  Jie Shen,et al.  Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model , 2017, J. Comput. Phys..

[43]  Jia Zhao,et al.  Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach , 2019, Appl. Math. Lett..

[44]  Francisco Guillén-González,et al.  Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models , 2014, Comput. Math. Appl..

[45]  Qi Wang,et al.  Arbitrarily High-order Unconditionally Energy Stable Schemes for Thermodynamically Consistent Gradient Flow Models , 2019, Comput. Phys. Commun..

[46]  Xiaofeng Yang,et al.  Regularized linear schemes for the molecular beam epitaxy model with slope selection , 2018 .

[47]  Jia Zhao,et al.  Linear second order in time energy stable schemes for hydrodynamic models of binary mixtures based on a spatially pseudospectral approximation , 2018, Adv. Comput. Math..

[48]  Zhi-Zhong Sun,et al.  Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection , 2014, Math. Comput..

[49]  Yuan Ma,et al.  An adaptive time-stepping strategy for solving the phase field crystal model , 2013, J. Comput. Phys..

[50]  I-Liang Chern,et al.  Simulating binary fluid-surfactant dynamics by a phase field model , 2012 .

[51]  Benedikt Wirth,et al.  A simple and efficient scheme for phase field crystal simulation , 2013 .

[52]  Jia Zhao,et al.  Second Order Fully Discrete Energy Stable Methods on Staggered Grids for Hydrodynamic Phase Field Models of Binary Viscous Fluids , 2018, SIAM J. Sci. Comput..

[53]  Karl Glasner,et al.  Improving the accuracy of convexity splitting methods for gradient flow equations , 2016, J. Comput. Phys..

[54]  Mejdi Azaïez,et al.  A variant of scalar auxiliary variable approaches for gradient flows , 2019, J. Comput. Phys..