Unusual activity detection for persistent target surveillance

The information generated by the integrated sensor suite is massive. Simply bringing the information to the decision makers is a cognitive disaster due to the information overload. Intelligent algorithms need to be developed to exploit and filter the information. In this work, we seek to develop content-level change detection and activity-level information fusion and filtering algorithms to detect unusual activities for persistent target surveillance applications.

[1]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[2]  David J. Kriegman,et al.  Invariant-based recognition of complex curved 3D objects from image contours , 1995, Proceedings of IEEE International Conference on Computer Vision.

[3]  Mark J. Carlotto,et al.  A Signal-Symbol Approach to Change Detection , 1986, AAAI.

[4]  Larry S. Davis,et al.  W/sup 4/: Who? When? Where? What? A real time system for detecting and tracking people , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[5]  T.F. Quatieri,et al.  Statistical model-based algorithms for image analysis , 1986, Proceedings of the IEEE.

[6]  Ramakant Nevatia,et al.  Event Detection and Analysis from Video Streams , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Mark J. Carlotto,et al.  Multispectral image processing for environmental monitoring , 1993, Other Conferences.

[8]  Longin Jan Latecki,et al.  Shape Similarity Measure Based on Correspondence of Visual Parts , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Milind R. Naphade,et al.  A probabilistic framework for semantic indexing and retrieval in video , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[10]  Mr. Todd Jamison,et al.  AUTOMATED GEOREFERENCING OF VIDEO USING REGISTRATION WITH CONTROLLED IMAGERY AND VIDEO-PHOTOGRAMMETRY , 2000 .

[11]  David C. Hogg,et al.  Learning the distribution of object trajectories for event recognition , 1996, Image Vis. Comput..

[12]  Dong-Gyu Sim,et al.  Localization Based on the Gradient Information for DEM matching , 1998, MVA.

[13]  Joseph G. Kawamura,et al.  Automatic Recognition of Changes in Urban Development from Aerial Photographs , 1971, IEEE Trans. Syst. Man Cybern..

[14]  Jake K. Aggarwal,et al.  Matching Aerial Images to 3-D Terrain Maps , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Richard P. Wildes,et al.  Video georegistration: algorithm and quantitative evaluation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[17]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[18]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[19]  F. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .

[20]  Yoram Bresler,et al.  On-Line Vehicle Motion Estimation from Visual Terrain Information Part I: Recursive Image Registration , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[21]  Pramod K. Varshney,et al.  An image change detection algorithm based on Markov random field models , 2002, IEEE Trans. Geosci. Remote. Sens..

[22]  Ram M. Narayanan,et al.  A shape-based approach to change detection of lakes using time series remote sensing images , 2003, IEEE Trans. Geosci. Remote. Sens..

[23]  Jitendra Malik,et al.  Shape contexts enable efficient retrieval of similar shapes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[24]  Curt H. Davis,et al.  Automated Building Extraction from High-Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information , 2005, EURASIP J. Adv. Signal Process..

[25]  Curt H. Davis,et al.  Fully automated road network extraction from high-resolution satellite multispectral imagery , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[26]  Mark J. Carlotto Detection and analysis of change in remotely sensed imagery with application to wide area surveillance , 1997, IEEE Trans. Image Process..