Analyse sur structures modèles des effets mécaniques de la réaction sulfatique interne du béton

La Reaction Sulfatique Interne (RSI) est une pathologie du beton pouvant affecter les materiaux soumis a un echauffement au-dela de 65°C. Elle consiste en une formation d'ettringite dans le materiau durci et conduit a son gonflement. Il s'en suit une fissuration et une degradation des performances mecaniques pouvant poser des problemes d'integrite structurelle a l'instar de la Reaction Alcali-Granulat (RAG) a laquelle elle est frequemment couplee in situ. Lorsqu'un ouvrage est atteint, il convient de poser un diagnostic, evaluer son aptitude au service, predire son evolution et mettre en uvre des methodes de reparation. Ceci necessite une comprehension fine des effets de la RSI a l'echelle microscopique et a l'echelle de l'ouvrage. De nombreuses etudes experimentales et theoriques ont ete menees pour determiner les mecanismes mis en uvre et les parametres influencant la RSI. Toutefois, la complexite des phenomenes rend delicate la transposition de ces connaissances a l'echelle de la structure. Les approches macroscopiques semblent donc plus adaptees a ce type de probleme. Pour mettre au point ces approches, il est necessaire de comprendre en detail les effets de la pathologie a l'echelle du materiau et de la structure. Cette these decrit les resultats d'une etude de laboratoire basee sur des essais sur eprouvettes pour caracteriser les couplages entre les gonflements et l'humidite, la temperature et l'etat de contraintes. Ces travaux ont egalement ete l'occasion d'etudier les couplages entre RAG et RSI. En parallele, des suivis dimensionnels et hydriques de poutres soumises a des conditions d'exposition a l'humidite controlees ont permis de constituer une base de donnees des effets structurels de la RSI. La confrontation de ces essais menes conjointement a l'echelle du materiau et de la structure fournit des donnees permettant de mettre au point des methodes de re-calcul des ouvrages et de les valider en confrontant leurs predictions aux resultats experimentaux

[1]  Jean-Michel Torrenti,et al.  Thoughts about drying shrinkage: Experimental results and quantification of structural drying creep , 1997 .

[2]  E. Garboczi Stress, displacement, and expansive cracking around a single spherical aggregate under different expansive conditions , 1997 .

[3]  F. Glasser The role of sulfate mineralogy and cure temperature in delayed ettringite formation , 1996 .

[4]  J. Beaudoin,et al.  On the distinction between delayed and secondary ettringite formation in concrete , 1996 .

[5]  L. Divet Les reactions sulfatiques internes au beton: contribution a l'etude des mecanismes de la formation differee de l'ettringite , 2001 .

[6]  Y. Fu Delayed ettringite formation in Portland cement products. , 1996 .

[7]  M. Collepardi The influence of sulfate content in clinker or cement and curing temperature on DEF-related expansion of concrete , 2004 .

[8]  L. Divet Comment se prémunir des réactions sulfatiques dans les bétons ? Point sur les normes actuelles et quelques recommandations , 2002 .

[9]  M. Collepardi,et al.  A state-of-the-art review on delayed ettringite attack on concrete , 2003 .

[10]  J. Olek,et al.  Studies on delayed ettringite formation in early-age, heat-cured mortars: I. Expansion measurements, changes in dynamic modulus of elasticity, and weight gains , 2002 .

[11]  L. Divet,et al.  Delayed Ettringite Formation: The Effect of Temperature and Basicity on the Interaction of Sulphate and C-S-H Phase , 1998 .

[12]  L A Graf,et al.  Effect of Relative Humidity on Expansion and Microstructure of Heat-Cured Mortars , 2007 .

[13]  W. Hime,et al.  Delayed Ettringite Formation: Many Questions and Some Answers , 1999, "SP-177: Ettringite, the Sometimes Host of Destruction".

[14]  M. Daimon,et al.  ETTRINGITE FORMATION AND MICROSTRUCTURE OF RAPID HARDENING CEMENT , 2004 .

[15]  C. D. Lawrence,et al.  Deterioration of heat-cured mortars due to the combined effect of delayed ettringite formation and freeze/thaw cycles , 1997 .

[16]  C. J. Lancucki,et al.  Morphological, mineralogical and chemical features of steam-cured concretes containing densified silica fume and various alkali levels , 1993 .

[17]  X. Brunetaud,et al.  Delayed Ettringite Formation: Suggestion of a Global Mechanism in Order to Link Previous Hypotheses , 2004, SP-222: Seventh CANMET/ACI International Conference on Recent Advances in Concrete Technology.

[18]  F. P. Glasser,et al.  Impact of prolonged warm (85°C) moist cure on Portland cement paste , 2000 .

[19]  Johansen,et al.  Heat Curing and Late Formation of Ettringite , 1999, "SP-177: Ettringite, the Sometimes Host of Destruction".

[20]  Alain Sellier,et al.  Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution , 2007 .

[21]  Deng Min,et al.  Formation and expansion of ettringite crystals , 1994 .

[22]  S. Diamond Delayed ettringite formation — Processes and problems , 1996 .

[23]  Franz-Josef Ulm,et al.  Nanogranular packing of C–S–H at substochiometric conditions , 2010 .

[24]  L. Divet,et al.  A Concrete Performance Test for Delayed Ettringite Formation: Part I Optimisation , 2006 .

[25]  Significance of pre-existing cracks on nucleation of secondary ettringite in steam cured cement paste , 1994 .

[26]  Cruz Alonso,et al.  Relative humidity in the interior of concrete exposed to natural and artificial weathering , 1999 .

[27]  Frank Winnefeld,et al.  Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes , 2007 .

[28]  Menashii D. Cohen,et al.  Theories of expansion in sulfoaluminate - type expansive cements: Schools of thought , 1983 .

[29]  Michael D. A. Thomas,et al.  Investigation of the Internal Stresses Caused by Delayed Ettringite Formation in Concrete , 2008 .

[30]  F. Glasser,et al.  Phase development in cement in relation to the secondary ettringite problem , 1995 .

[31]  G. W. Quick,et al.  Microscopic Features of Cracked and Uncracked Concrete Railway Sleepers , 1992 .

[32]  Charles Karissa Rust Role of Relative Humidity in Concrete Expansion due to Alkali-Silica Reaction and Delayed Ettringite Formation: Relative Humidity Thresholds, Measurement Methods, and Coatings to Mitigate Expansion , 2009 .

[33]  Denis Damidot,et al.  Impact of unrestrained Delayed Ettringite Formation-induced expansion on concrete mechanical properties , 2008 .

[34]  F. Glasser,et al.  Thermodynamic investigation of the CaO-Al_2O_3-CaCO_3-H_2O closed system at 25℃ and the influence of Na_2O , 1990 .

[35]  Claudia Comi,et al.  A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction , 2009 .

[36]  J. Beaudoin,et al.  Microcracking as a precursor to delayed ettringite formation in cement systems , 1996 .

[37]  P. K. Mehta Mechanism of expansion associated with ettringite formation , 1973 .

[38]  Heiner Siedel,et al.  Secondary ettringite formation in heat treated portland cement concrete: Influence of different W/C ratios and heat treatment temperatures , 1993 .

[39]  W. Hime,et al.  INVESTIGATION OF PRESTRESSED CONCRETE RAILWAY TIE DISTRESS , 1995 .

[40]  François Toutlemonde,et al.  Experimental analysis of concrete structures affected by DEF : Influence of moisture and restraint , 2008 .

[41]  R. D. Hooton,et al.  The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part I: Expansive behaviour , 2003 .

[42]  O. Batic,et al.  Secondary ettringite formation in concrete subjected to different curing conditions , 2000 .

[43]  Vincent Waller,et al.  Relations entre composition des betons, exothermie en cours de prise et resistance en compression , 1999 .

[44]  Mario Collepardi DAMAGE BY DELAYED ETTRINGITE FORMATION , 1999 .

[45]  J. Skalny,et al.  Simultaneous presence of alkali — silica gel and ettringite in concrete , 1993 .

[46]  I. Sims,et al.  RILEM Recommended Test Method AAR-0: Detection of Alkali-Reactivity Potential in Concrete—Outline guide to the use of RILEM methods in assessments of aggregates for potential alkali-reactivity , 2003 .

[47]  C. D. Lawrence Long-Term Expansion of Mortars and Concretes , 1999, "SP-177: Ettringite, the Sometimes Host of Destruction".

[48]  Olivier Coussy,et al.  Thermo-chemo-mechanics of ASR expansion in concrete structures , 2000 .

[49]  Richard E. Klingner,et al.  Structural Assessment of Bridges with Premature Concrete Deterioration due to Expansive Reactions , 2009 .

[50]  François Toutlemonde,et al.  Experimental Investigations Concerning Combined Delayed Ettringite Formation and Alkali-Aggregate Reaction , 2010 .

[51]  John Bensted,et al.  A discussion of the review paper “Sulphate attack research—whither now?” by M. Santhanam, M.D. Cohen, and J. Olek☆ , 2002 .

[52]  D. Heinz,et al.  Present State of Investigation on Damaging late Ettringite Formation (DLEF) in Mortars and Concretes , 1999, "SP-177: Ettringite, the Sometimes Host of Destruction".

[53]  J. Skalny Internal sulfate attack - points of agreement and disagreement , 2004 .

[54]  T Kretz,et al.  Aide a la gestion des ouvrages atteints de reactions de gonflement interne : Guide methodologique , 2003 .

[55]  D. Damidot,et al.  Water chemical potential: A key parameter to determine the thermodynamic stability of some hydrated cement phases in concrete? , 2006 .

[56]  Rémi Barbarulo Comportement des matériaux cimentaires : actions des sulfates et de la température , 2002 .

[57]  J. Beaudoin,et al.  Mechanism of sulphate expansion II. Validation of Thermodynamic Theory , 1992 .

[58]  K. Scrivener,et al.  Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars , 2002 .

[59]  S. L. Marusin A simple treatment to distinguish alkali—silica gel from delayed ettringite formations in concrete , 1994 .

[60]  S. Diamond The relevance of laboratory studies on delayed ettringite formation to DEF in field concretes , 2000 .

[61]  C. D. Lawrence,et al.  Delayed ettringite formation in heat-cured Portland cement mortars , 1999 .

[62]  Etienne Grimal,et al.  Concrete modelling for expertise of structures affected by alkali aggregate reaction , 2010 .

[63]  H. Taylor,et al.  ETTRINGITE IN HYDRATION OF PORTLAND CEMENT CONCRETE AND ITS OCCURRENCE IN MATURE CONCRETES , 2001 .

[64]  J. Beaudoin,et al.  Expansion of portland cement mortar due to internal sulfate attack , 1997 .

[65]  S. Diamond Delayed ettringite formation - a current assessment , 2004 .

[66]  C. D. Lawrence,et al.  Delayed ettringite formation in 4-year old cement pastes , 1996 .

[67]  P Livesey,et al.  Relating ASR structural damage to concrete composition and environment , 1996 .

[68]  Gérard Ballivy,et al.  Assessment of the expansion related to alkali-silica reaction by the Damage Rating Index method , 2005 .

[69]  Sadananda Sahu,et al.  DELAYED ETTRINGITE FORMATION IN SWEDISH CONCRETE RAILROAD TIES , 2004 .

[70]  Etienne Grimal,et al.  Combination of Structural Monitoring and Laboratory Tests for Assessment of Alkali-Aggregate Reaction Swelling: Application to Gate Structure Dam , 2009 .

[71]  K. Scrivener,et al.  What causes differences of C-S-H gel grey levels in backscattered electron images? , 2002 .

[72]  P. Brown,et al.  THE FORMATION OF ETTRINGITE AT ELEVATED TEMPERATURE , 1993 .

[73]  Wei Chen,et al.  Alkali binding in hydrated Portland cement paste , 2010 .

[74]  Victor E. Saouma,et al.  Constitutive Model for Alkali-Aggregate Reactions , 2006 .

[75]  D. Macphee,et al.  Solubility properties of ternary and quaternary compounds in the CaO Al2O3 SO3H2O system , 1991 .

[76]  H. Ghorab On the chemistry of delayed ettringite formation , 2004 .

[77]  Rachid Mensi,et al.  Séchage du béton: analyse et modélisation , 1988 .

[78]  Manuel d'identification des reactions de degradation interne du beton dans les ouvrages d'art , 1999 .

[79]  Oguzhan Bayrak,et al.  ASR/DEF-Damaged Bent Caps: Shear Tests and Field Implications , 2009 .

[80]  A. Shayan,et al.  An experimental clarification of the association of delayed ettringite formation with alkali-aggregate reaction , 1996 .

[81]  B. Mather "Sulfate Soundness, Sulfate Attack, And Expansive Cement In Concrete" , 1969, SP-223: Investigating Concrete-Selected Works of Bryant and Katharine Mather.

[82]  Carl W. Correns,et al.  Growth and dissolution of crystals under linear pressure , 1949 .

[83]  Véronique Barogel-Bouny,et al.  Caractérisation des pâtes de ciment et des bétons , 1994 .

[84]  F. Glasser,et al.  Investigation of the CaO-Al2O3-SiO2-H2O system at 25°C by thermodynamic calculations , 1995 .

[85]  D. Damidot,et al.  Thermodynamic investigation of the CaO—Al2O3— CaSO4—CaCO3-H2O closed system at 25°C and the influence of Na2O , 1995 .

[86]  J. Beaudoin,et al.  Effect of temperature on sulphate adsorption/desorption by tricalcium silicate hydrates , 1994 .

[87]  C. D. Lawrence,et al.  Effect of type of aggregate on delayed ettringite formation , 1999 .

[88]  Etienne Grimal,et al.  Creep, Shrinkage, and Anisotropic Damage in Alkali-Aggregate Reaction Swelling Mechanism-Part II: Identification of Model Parameters and Application , 2008 .

[89]  J. F. Young,et al.  Thermal stability of ettringite in alkaline solutions at 80 °C , 2004 .

[90]  P. Yan,et al.  The semiquantitative determination and morphology of ettringite in pastes containing expansive agent cured in elevated temperature , 2001 .

[91]  Edward J. Garboczi,et al.  Modelling drying shrinkage of cement paste and mortar Part 1. Structural models from nanometres to millimetres , 1995 .

[92]  A Pavoine,et al.  Reaction sulfatique interne au beton : Essai d'expansion residuelle sur carotte de beton extraite de l'ouvrage , 2009 .

[93]  Y. Shimada Chemical path of ettringite formation in heat-cured mortar and its relationship to expansion , 2005 .

[95]  James J. Beaudoin,et al.  Effect of Aggregate Particle Size and Composition on Expansion of Mortar Bars due to Delayed Ettringite Formation , 1998 .

[96]  Karen Scrivener,et al.  Influence of the storage conditions on the dimensional changes of heat-cured mortars , 2001 .

[97]  Alain Sellier,et al.  Orthotropic modelling of alkali-aggregate reaction in concrete structures: numerical simulations , 2003 .

[98]  Etienne Grimal,et al.  Creep, Shrinkage, and Anisotropic Damage in Alkali-Aggregate Reaction Swelling Mechanism-Part I: A Constitutive Model , 2008 .

[99]  George W. Scherer,et al.  Crystallization in pores , 1999 .

[100]  P. Brown,et al.  The stability of ettringite , 1993 .

[101]  R. Hooton,et al.  THE EFFECT OF POZZOLANS AND SLAG ON THE EXPANSION OF MORTARS CURED AT ELEVATED TEMPERATURE PART II: MICROSTRUCTURAL AND MICROCHEMICAL INVESTIGATIONS , 2004 .

[102]  G. Escadeillas,et al.  Expansion of five-year-old mortars attributable to DEF: Relevance of the laboratory studies on DEF? , 2009 .

[103]  J. Gillott,et al.  Rapid Test of Concrete Expansivity Due to Internal Sulfate Attack , 1992 .

[104]  Nizar Baghdadi,et al.  Modélisation du couplage chimico-mécanique d'un béton atteint d'une réaction sulfatique interne , 2008 .

[105]  Nordine Leklou Contribution à la connaissance de la réaction sulfatique interne , 2008 .